Pressure Only (pressure + only)

Distribution by Scientific Domains


Selected Abstracts


Plantar pressures in diabetic patients with foot ulcers which have remained healed

DIABETIC MEDICINE, Issue 11 2009
T. M. Owings
Abstract Aims, The recurrence of foot ulcers is a significant problem in people with diabetic neuropathy. The purpose of this study was to measure in-shoe plantar pressures and other characteristics in a group of neuropathic patients with diabetes who had prior foot ulcers which had remained healed. Methods, This was an epidemiological cohort study of patients from diabetes clinics of two Swedish hospitals. From a database of 2625 eligible patients, 190 surviving patients with prior plantar ulcers of the forefoot (hallux or metatarsal heads) caused by repetitive stress were identified and 49 patients agreed to participate. Barefoot and in-shoe plantar pressures were measured during walking. Data on foot deformity, activity profiles and self-reported behaviour were also collected. Results, Mean barefoot plantar peak pressure at the prior ulcer site (556 kPa) was lower than in other published series, although the range was large (107,1192 kPa). Mean in-shoe peak pressure at this location averaged 207 kPa when measured with an insole sensor. Barefoot peak pressure only predicted ,35% of the variance of in-shoe peak pressure, indicating variation in the efficacy of the individual footwear prescriptions (primarily extra-depth shoes with custom insoles). Conclusions, We propose that the mean value for in-shoe pressures reported in these patients be used as a target in footwear prescription for patients with prior ulcers. Although plantar pressure is only one factor in a multifaceted strategy to prevent ulcer recurrence, the quantitative focus on pressure reduction in footwear is likely to have beneficial effects. [source]


Differential Effects of Vitamin D Analogs on Vascular Calcification,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007
Anna Cardús
Abstract We tested the effects of calcitriol and its analog paricalcitol on VSMC calcification in vitro and in vivo. For that reason, cells and animals with five-sixths nephrectomy were treated with both compounds. Calcitriol, but not paricalcitol, increased VSMC calcification in vitro and in vivo independently of calcium and phosphate levels. This increase in calcification was parallel to an increase in the RANKL/OPG ratio. Introduction: Vascular calcification is a common finding in patients with endstage renal disease. Furthermore, those patients often present secondary hyperparathyroidism, partly because of a decrease of calcitriol synthesis on the kidney. Thus, one of the main therapeutic options is to treat those patients with calcitriol or analogs. However, this treatment presents unwanted side effects, such as increases in vascular calcification. Materials and Methods: We tested the effect on vascular smooth muscle cell (VSMC) calcification of calcitriol and one of its analogs, paricalcitol, in vitro and in vivo in animals with endstage renal disease. Results: Calcitriol increased calcification of VSMCs cultured in calcification media. This effect was not present when cells were incubated with paricalcitol. Furthermore, only cells incubated with calcitriol showed an increased RANKL/ osteoprotegerin (OPG) expression. Animals with renal failure treated with hypercalcemic doses of calcitriol and paricalcitol showed an increase in systolic blood pressure. However, diastolic blood pressure only raised significantly in those animals treated with paricalcitol. This effect led to a significant increase in pulse pressure in animals treated with calcitriol. The increase in pulse pressure was likely caused by the extensive calcification observed in arteries of animals treated with calcitriol. This increase in calcification was not seen in arteries of animals treated with paricalcitol, despite having similar levels of serum calcium and phosphorus as animals treated with calcitriol. Furthermore, the decreases in serum PTH levels were similar in both treatments. Conclusions: We conclude that paricalcitol has a different effect than calcitriol in VSMC calcification and that this could explain part of the differences observed in the clinical settings. [source]


Melt viscoelasticity of polyethylene terephthalate resins for low density extrusion foaming

POLYMER ENGINEERING & SCIENCE, Issue 3 2000
uintans
The rheological properties of conventional polyethylene terephthalate (PET) resins are not particularly suitable for low density extrusion foaming with physical blowing agents; as a result, chemically modified resins through chain extension/branching reactions are often used. Such resins have overall higher melt viscosity and higher melt strength/melt "elasticity" than unmodified materials. In this work, following a review of the prior art on PET chemical modification, an unmodified and a chemically modified resin were selected and characterized for their melt viscoelastic properties including shear and dynamic complex viscosity over a broad shear rate/frequency range, storage and loss modulus, and die swell. Certain rheological models were found to provide better fits of the entire viscosity curve for the unmodified vs. the modified resin. Foamed extrudates having variable densities (from about 1.2 to 0.2 g/cc), were prepared by carbon dioxide injection in monolayer flat sheet extrusion equipment. Foams with increasingly lower density, below 0.5 g/cc, were obtained by increasing gas pressure only in the case of the chemically modified resin. The effects of variables such as concentration of the physical blowing agent, resin rheology, resin thermal properties and choice of process conditions are related to product characteristics including density, cell size and crystallinity. [source]


Processing, modelling and predicting time-lapse effects of overpressured fluid-injection in a fractured reservoir

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2002
Erika Angerer
Summary Time-lapse seismology is important for monitoring subsurface pressure changes and fluid movements in producing hydrocarbon reservoirs. We analyse two 4-D, 3C onshore surveys from Vacuum Field, New Mexico, USA, where the reservoir of interest is a fractured dolomite. In Phase VI, a time-lapse survey was acquired before and after a pilot tertiary-recovery programme of overpressured CO2 injection, which altered the fluid composition and the pore-fluid pressure. Phase VII was a similar time-lapse survey in the same location but with a different lower-pressure injection regime. Applying a processing sequence to the Phase VI data preserving normal-incidence shear-wave anisotropy (time-delays and polarization) and maximizing repeatability, interval-time analysis of the reservoir interval shows a significant 10 per cent change in shear-wave velocity anisotropy and 3 per cent decrease in the P -wave interval velocities. A 1-D model incorporating both saturation and pressure changes is matched to the data. The saturation changes have little effect on the seismic velocities. There are two main causes of the time-lapse changes. Any change in pore-fluid pressures modifies crack aspect ratios. Additionally, when there are overpressures, as there are in Phase VI, there is a 90° change in maximum impedance directions, and the leading faster split shear wave, instead of being parallel to the crack face as it is for low pore-fluid pressures, becomes orthogonal to the crack face. The anisotropic poro-elasticity (APE) model of the evolution of microcracked rock, calculates the evolution of cracked rock to changing conditions. APE modelling shows that at high overburden pressures only nearly vertical cracks, to which normal incidence P waves are less sensitive than S waves, remain open as the pore-fluid pressure increases. APE modelling matches the observed time-lapse effects almost exactly demonstrating that shear-wave anisotropy is a highly sensitive diagnostic of pore-fluid pressure changes in fractured reservoirs. In this comparatively limited analysis, APE modelling of fluid-injection at known pressure correctly predicted the changes in seismic response, particularly the shear-wave splitting, induced by the high-pressure CO2 injection. In the Phase VII survey, APE modelling also successfully predicted the response to the lower-pressure injection using the same Phase VI model of the cracked reservoir. The underlying reason for this remarkable predictability of fluid-saturated reservoir rocks is the critical nature and high crack density of the fluid-saturated cracks and microcracks in the reservoir rock, which makes cracked reservoirs critical systems. [source]