Pressure Loss (pressure + loss)

Distribution by Scientific Domains


Selected Abstracts


Water pipeline failure due to water hammer effects

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 12 2006
C. SCHMITT
ABSTRACT A numerical model has been established in order to simulate the propagation of pressure waves in water networks. The present model formulation is based on a system of partial hyperbolic differential equations. This system has been solved via the characteristics method. The current model provides the necessary data and the necessary damping of water hammer waves, taking into account the structure of the pipe network and the pressure loss. The numerical algorithm estimates the maximum pressure values resulting from the water hammer when closing valves in the network and consequently, the maximum stresses in the pipes have been calculated. In the case of simultaneous closing of several valves, the over pressure can exceed the admissible pressure. In this case, the severity of a defect such as a corrosion crater (pit) has been estimated by computing a safety factor for the stress distribution at the defect tip. This allows the applied notch stress intensity factor to be obtained. To investigate the defect geometry effects, semi-spherical and semi-elliptical defects are deemed to exist in up to one-half of the thickness of the pipe wall. The outcomes have been introduced into the structural integrity assessment procedure (SINTAP) failure diagram assessment (FAD) in order to obtain the safety factor value. Conventionally, it is considered that a failure hazard exists if this safety factor is less than two. [source]


The heat transfer and pressure loss characteristics of a heat exchanger for recovering latent heat (the heat transfer and pressure loss characteristics of the heat exchanger with wing fin)

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2007
Kiyoshi Kawaguchi
Abstract In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215,229, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20154 [source]


Simulations of flow through fluid/porous layers by a characteristic-based method on unstructured grids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2001
Baili Zhang
Abstract An upwind characteristic-based finite volume method on unstructured grids is employed for numerical simulation of incompressible laminar flow and forced convection heat transfer in 2D channels containing simultaneously fluid layers and fluid-saturated porous layers. Hydrodynamic and heat transfer results are reported for two configurations: the first one is a backward-facing step channel with a porous block inserted behind the step, and the second one is a partially porous channel with discrete heat sources on the bottom wall. The effects of Darcy numbers on heat transfer augmentation and pressure loss were investigated for low Reynolds laminar flows. The results demonstrate the accuracy and robustness of the numerical scheme proposed, and suggest that partially porous insertion in a channel can significantly improve heat transfer performance with affordable pressure loss. Copyright © 2001 John Wiley & Sons, Ltd. [source]


A parametric study of multi-phase and multi-species transport in the cathode of PEM fuel cells

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2008
Nada Zamel
Abstract In this study, a mathematical model is developed for the cathode of PEM fuel cells, including multi-phase and multi-species transport and electrochemical reaction under the isothermal and steady-state conditions. The conservation equations for mass, momentum, species and charge are solved using the commercial software COMSOL Multiphysics. The catalyst layer is modeled as a finite domain and assumed to be composed of a uniform distribution of supported catalyst, liquid water, electrolyte and void space. The Stefan,Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Owing to the low relative species' velocity, Darcy's law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is considered to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. The dependency of the capillary pressure on the saturation is modeled using the Leverette function and the Brooks and Corey relation. A parametric study is carried out to investigate the effects of pressure drop in the flow channel, permeability, inlet relative humidity and shoulder/channel width ratio on the performance of the cell and the transport of liquid water. An inlet relative humidity of 90 and 80% leads to the highest performance in the cathode. Owing to liquid water evaporation, the relative humidity in the catalyst layer reaches 100% with an inlet relative humidity of 90 and 80%, resulting in a high electrolyte conductivity. The electrolyte conductivity plays a significant role in determining the overall performance up to a point. Further, the catalyst layer is found to be important in controlling the water concentration in the cell. The cross-flow phenomenon is shown to enhance the removal of liquid water from the cell. Moreover, a shoulder/channel width ratio of 1:2 is found to be an optimal ratio. A decrease in the shoulder/channel ratio results in an increase in performance and an increase in cross flow. Finally, the Leverette function leads to lower liquid water saturations in the backing and catalyst layers than the Brooks and Corey relation. The overall trend, however, is similar for both functions. Copyright © 2007 John Wiley & Sons, Ltd. [source]


An air filter pressure loss model for fan energy calculation in air handling units

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2003
Mingsheng Liu
Abstract Air filters consume a significant part of the fan power in air handling systems. Due to lack of suitable models, the fan energy associated with the filter pressure drop is often estimated based on average airflow and average pressure drop across the filter. Since the pressure drop varies nonlinearly with airflow and the filter resistance varies with dirt build-up, current methods often produce erroneous results. This paper presents a new air filter pressure loss model that has been developed and verified using experimental data. The model projects the pressure losses across the filter for both constant and variable airflows. The inputs to the model are the airflow rate, the time of use, the initial design and final pressure losses at the design flow rate, and the coefficient of a power law regression of pressure loss as a function of airflow rate. The air filter pressure loss model may be implemented in hourly building energy simulation programs that perform hourly simulation at the air handling unit level. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Estimation of elongational viscosity of polymers from entrance loss data using individual parameter optimization

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2002
Mahesh Gupta
The elongational viscosity model proposed by Sarkar and Gupta (Journal of Reinforced Plastics and Composites 2001, 20, 1473), along with the Carreau model for shear viscosity is used for a finite element simulation of the flow in a capillary rheometer. The entrance pressure loss predicted by the finite element flow simulation is matched with the corresponding experimental data to predict the parameters in the elongational viscosity model. To improve the computational efficiency, various elongational viscosity parameters are optimized individually. Estimated elongational viscosity for a Low Density Polyethylene (Dow 132i) is reported for two different temperatures. © 2002 Wiley Periodicals, Inc. Adv Polym Techn 21: 98,107, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/adv.10017 [source]


Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink

AICHE JOURNAL, Issue 8 2010
Yongping Chen
Abstract A three-dimensional thermal and hydrodynamic model for constructal tree-shaped minichannel heat sink is developed. The heat and fluid flow in the constructal heat sink with an inlet hydraulic diameter of 4 mm are numerically analyzed, taking into consideration conjugate heat transfer in the channel walls. The pressure drop, temperature uniformity, and coefficient of performance (COP) of the constructal tree-shaped heat sink are evaluated and compared with those of the corresponding traditional serpentine flow pattern. The results indicate that the constructal tree-shaped minichannel heat sinks have considerable advantages over the traditional serpentine flow patterns in both heat transfer and pressure drop. The strong and weak heat flow can be effectively allocated in tree-shaped flow structures; hence, the inherent advantage of uniform temperature on the heating surface in the constructal tree-shaped heat sink is demonstrated. And in tree-shaped flow structures, the local pressure loss due to confluence flow is found to be larger than that due to diffluence flow. In addition, an aluminum constructal tree-shaped minichannel heat sink is fabricated to conduct the verification experiment. The experimentally measured temperature distribution and pressure drop are in agreement with the numerical simulation, which verifies that the present model is reasonable. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Influence of Coupling Agents on Melt Flow Behavior of Natural Fiber Composites

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 5 2007
Velichko Hristov
Abstract The influence of coupling agents on the melt rheological properties of natural fiber composites has been investigated in this work using capillary and rotational rheometers. Scanning electron microscopy was also employed to supplement the rheological data. It was found that molecular weight and molecular weight distribution of the polymer matrix and coupling agent characteristics influence the filler wetting and the melt flow properties of the filled composites. Generally, low molecular weight and narrow molecular weight distribution polyethylene matrix provides relatively larger increase of the viscosity of the composites. Coupling agents tend to increase the resistance to shearing, but wall slip effects may interfere with the measured values, especially at very high filler loadings. Entrance pressure loss in capillaries is also influenced by polymer matrix and coupling agent used. [source]


Effect of elongational viscosity on axisymmetric entrance flow of polymers

POLYMER ENGINEERING & SCIENCE, Issue 1 2000
Mahesh Gupta
A finite element simulation of the flow in a channel with an abrupt contraction is presented. The effects of the shear and elongational viscosities of a polymer on the entrance flow are analyzed employing a truncated power-law model. The power-law index and the strain rate characterizing the transition from Newtonian to power-law behavior for the elongational viscosity are treated as being independent of the values of these two parameters for the shear viscosity. The effect of flow rate on entrance flow is also analyzed. It is confirmed that the Trouton ratio is important in determining the recirculating vortex and the extra pressure loss in entrance flow. Extra pressure loss and vortex length predicted by a finite element simulation of entrance loss are compared with the corresponding predictions from Binding's approximate analysis. [source]


A New Pulsatile Volumetric Device With Biomorphic Valves for the In Vitro Study of the Cardiovascular System

ARTIFICIAL ORGANS, Issue 12 2009
Ettore Lanzarone
Abstract A pulsatile mock loop system was designed and tested. This prototype represents a versatile, adjustable, and controllable experimental apparatus for in vitro studies of devices meant to interface with the human circulatory system. The pumping system consisted of a ventricular chamber featuring two biomorphic silicone valves as the inlet and outlet valves. The chamber volume is forced by a piston pump moved by a computer-controlled, low-inertia motor. Fluid dynamic tests with the device were performed to simulate physiological conditions in terms of cardiac output (mean flow of 5 and 6 L/min, with beat rates from 60 to 80 bpm), of rheological properties of the processed fluid, and of systemic circulation impedance. The pulsating actuator performed a good replication of the physiological ventricular behavior and was able to guarantee easy control of the waveform parameters. Experimental pressure and flow tracings reliably simulated the physiological profiles, and no hemolytic subatmospheric pressures were revealed. The performance of the prototype valves was also studied in terms of dynamic and static backflow, effective orifice area, and pressure loss, resulting in their applicability for this device. Mechanical reliability was also tested over 8 h. The device proved to be a reliable lab apparatus for in vitro tests; the pumping system also represents a first step toward a possible future application of pulsating perfusion in the clinic arena, such as in short-term cardiac assist and pulsatile cardiopulmonary bypass. [source]


Fluid flow in an impacting symmetrical tee junction: I single-phase flow and experimental

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2009
A. P. Doherty
Abstract Experiments were conducted on single-phase fluid flow in a horizontal 90° symmetrical impacting tee junction of 0.026 m i.d. The impacting geometry was chosen because, unlike the combining tee, the pressure loss of the system was not amenable to modelling. Various methods of presentation of the junction pressure drop were attempted and a simple dimensionless model suggested based on the inlet Reynolds number and the equivalent length parameter le/d. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Two-phase bifurcated dividing pipe flow

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2009
A. Murphy
Abstract Data are reported on the pressure drop of co-current air,water two-phase flow through 0.0454 m i.d. bifurcations with included angles of 60°, 90°, 120° and 180°. The pressure changes on account of the angles at the junctions depended on the superficial phase velocities and the angle of bifurcation. For the 60° lowest angle of bifurcation the pressure drop was insensitive to flow rates if the superficial liquid velocity was in the lower range at and below 0.1 m s,1. For higher liquid flows the pressure loss increased dramatically, particularly in the annular-type regimes. When the angle at the junction was increased, negative values of pressure loss, i.e. an increase in pressure was recorded across the bifurcation in the gas velocity region under 10 m s,1 and liquid rates at and above 0.1 m s,1 in the slug and blow-through slug regimes. The effect coincided with liquid separation from the inner inlet pipe wall of the junction and its subsequent reformation on the downstream walls. A second less dramatic increase in junction pressure drop occurred at the lowest liquid flow rate of 0.05 m s,1 for the tee (180° bifurcation) that was due both to the smooth transition of liquid through the junction and the damping of surface waves in stratified-type flow. A flow regime map was presented for the tee junction. The inlet flow showed agreement with the map but the flow regimes found in the outlet arms of the junction tended to form earlier than expected being triggered by the pressure disturbances in the passage through the bifurcation. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Feasibility of long-distance transport of thermal energy using solid sorption processes

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2010
Nathalie Mazet
Abstract This paper deals with the challenging transportation of thermal energy over long distances (over 10,km). The innovative concept presented in this paper is based on the transportation of a reactive fluid coupled with two sorption systems involving this fluid in two endothermal and exothermal processes respectively on source site and user site. The transport of this fluid at ambient temperature minimizes the thermal losses and it is therefore relevant for long distances. Moreover, an original concept involving a cascade of two sorption cycles can allow a heat upgrading on the user site using a distant source. This paper focuses on the feasibility of such systems. The potentialities have been detailed according to the reactive pairs, such as the well-known hydrates and ammonia solid/gas reactants, and taking into account thermodynamic and technological constraints. The cold production and transport can be carried out by numerous ammonia-based pairs. Nevertheless, such reactive pairs can perform a heat upgrading, but only if an additional heat source is available on the user site. The transportation of the reactive fluid between source and user sites has been investigated and it is not a limiting point. As it is transported at ambient temperature, the thermal losses are very weak. On the other hand, the pressure losses can be overcome with either an acceptable energetic cost or by slightly changing the operating conditions. Compared to current district heating networks based on sensible heat transportation, such thermochemical systems involving the transportation of a reactive fluid seem more efficient when the user is located more than 10,km away from the source site. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Energy consideration for designing supercharged ram jet engines

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2008
Amro M. Al-QutubArticle first published online: 20 JUN 200
Abstract The present work investigates the energy considerations and performance characteristics of a newly proposed supercharged ram jet engine. Thermodynamics and fluid mechanics analyses were developed to predict specific thrust, thrust-specific fuel consumption (TSFC), overall efficiency, and thrust-to-weight ratio of the engine. Compressor pressure ratio and efficiency, combustor temperature, and pressure losses in the burner and nozzle are considered as primary variables in the engine performance analysis. Performance characteristics are calculated to illustrate the effect of each parameter independently at different flight speeds. This is done while maintaining other parameters at given typical operating values. A computer program was developed to perform the iterative calculations. Results indicate that the compressor pressure ratio and the combustion product temperature are the most critical parameters in determining the performance of the engine. At compressor pressure ratio of 1.15,1.2, the typical static thrust-to-weight ratio is at maximum. Increasing combustion product temperature increases the thrust-to-weight ratio as well as TSFC. Finally, newly developed high power-to-weight ratio IC engine makes it possible for the supercharged ram jet engine to achieve high performance, in terms of thrust-to-weight ratio and TSFC. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Thermoeconomic optimization of the geometry of an air conditioning precooling air reheater dehumidifier

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2006
Rahim K. Jassim
Abstract Exergy method of optimization for the geometrical parameters of an air conditioning precooling air reheater with turbulent flow is developed in this paper. The method is based on exergy, economic analysis and optimization theory. As there are humid air streams involved in the heat transfer process, then there are irreversibilities or exergy destruction, which is due to pressure losses, temperature difference and specific humidity gradient. These principle components of total irreversibility are not independent and there is a trade-off between them. Therefore, the purpose of this research paper is to study the effect of the geometry and the specific humidity of the two streams on the irreversibilities of a crossflow precooling air reheater dehumidifier. Also, the optimum balance between the three components of irreversibility is determined thereby giving the optimum solution for heat exchanger area. The total cost function is expressed on an annualized basis of the sum of the precooler capital cost and the running cost attributable to the precooler irreversibility. This total cost function is optimized in this paper according to the optimum heat transfer area and the total irreversibilities. Two optimum heat transfer areas were found for minimum total irreversibility and minimum total annual cost for a specific example. Finally, the relations between the typical operational variables such as heat transfer area, Reynolds numbers and the total annual cost for the precooler is developed and presented in graphs, which allow the calculation of the optimal heat transfer area, which gives the optimum irreversibility and minimum total annual cost. Copyright © 2005 John Wiley & Sons, Ltd. [source]


An air filter pressure loss model for fan energy calculation in air handling units

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2003
Mingsheng Liu
Abstract Air filters consume a significant part of the fan power in air handling systems. Due to lack of suitable models, the fan energy associated with the filter pressure drop is often estimated based on average airflow and average pressure drop across the filter. Since the pressure drop varies nonlinearly with airflow and the filter resistance varies with dirt build-up, current methods often produce erroneous results. This paper presents a new air filter pressure loss model that has been developed and verified using experimental data. The model projects the pressure losses across the filter for both constant and variable airflows. The inputs to the model are the airflow rate, the time of use, the initial design and final pressure losses at the design flow rate, and the coefficient of a power law regression of pressure loss as a function of airflow rate. The air filter pressure loss model may be implemented in hourly building energy simulation programs that perform hourly simulation at the air handling unit level. Copyright © 2003 John Wiley & Sons, Ltd. [source]


An assessment of hydraulic design of trickle laterals considering effect of minor losses,

IRRIGATION AND DRAINAGE, Issue 4 2007
Gürol Y
canalisations d'eau; canalisations tertiaires; conception hydraulique; analyse; perte de charge Abstract The accurate design of trickle irrigation laterals needs to determine the total energy losses that includes the pipe friction losses along the lateral line and the local pressure losses, sometimes called minor losses, due to the protrusion of emitter barbs into the flow. Evaluation of energy losses is usually carried out by assuming the hypothesis that minor losses can be neglected, even if previous experimental studies indicated that minor losses can become a significant percentage of total energy losses as a consequence of the high number of emitters installed along the lateral line. In this study, a simple analytical procedure is presented to evaluate the effect of minor losses which is characterized by a coefficient ,i, expressing the amount of minor head losses as a fraction of the kinetic head, on trickle lateral design. According to both the design cases of without and including minor losses, the dimensionless design curves were developed for both the various lateral diameters and lengths. The results of two practical examples for designing either the diameter or the length indicated that, in some design cases, neglecting minor losses may lead to erroneous designs of the lateral diameter and length. This method is simple and easily adaptable to solve lateral hydraulic problems but sufficiently precise in comparison with the alternative procedures. The proposed equations are useful when applied for design and evaluation purposes and offer a practical field solution for laterals used in irrigation systems. Copyright © 2007 John Wiley & Sons, Ltd. La conception précise des canalisations tertiaires dans un système d'irrigation au goutte à goutte doit déterminer le total des pertes de charge qui viennent du frottement dans la canalisation elle-même mais aussi des pertes locales, parfois appelées pertes mineures, dues à la protubérance de barbes au niveau des goutteurs. Cette évaluation est normalement réalisée en considérant comme négligeables les pertes mineures, même si des études expérimentales ont montré que ces pertes mineures pouvaient constituer un pourcentage significatif de la perte de charge totale du fait du grand nombre de goutteurs installés le long de la canalisation tertiaire. Dans cette étude, une procédure analytique simple est proposée pour évaluer l'effet des pertes mineures sur la conception des canalisations tertiaires grâce à un coefficient ,i, exprimant le montant de ces pertes en une fraction de la charge cinétique. En fonction des diverses options de conception prenant ou non en compte les pertes mineures, des courbes de conception non dimensionnelles ont été tracées pour les diamètres et les longueurs des canalisations. Les résultats de deux exemples concrets montrent que, dans certains cas de conception, le fait de négliger les pertes mineures peut conduire à des conceptions de diamètre et de longueur erronées. Cette méthode est simple et facilement adaptable à la résolution de problèmes hydrauliques au niveau des tertiaires mais suffisamment précise par rapport des méthodes alternatives. Les équations proposées sont utiles pour la conception et l'évaluation et offrent une solution de terrain concrète pour les canalisations tertiaires utilisées dans des systèmes d'irrigation (au goutte à goutte). Copyright © 2007 John Wiley & Sons, Ltd. [source]


Fountain flow revisited: The effect of various fluid mechanics parameters

AICHE JOURNAL, Issue 5 2010
Evan Mitsoulis
Abstract Numerical simulations have been undertaken for the benchmark problem of fountain flow present in injection-mold filling. The finite element method (FEM) is used to provide numerical results for both cases of planar and axisymmetric domains under laminar, isothermal, steady-state conditions for Newtonian fluids. The effects of inertia, gravity, surface tension, compressibility, slip at the wall, and pressure dependence of the viscosity are all considered individually in parametric studies covering a wide range of the relevant parameters. These results extend previous ones regarding the shape of the front, and in particular the centerline front position, as a function of the dimensionless parameters. The pressures from the simulations have been used to compute the excess pressure losses in the system (front pressure correction or exit correction). Inertia leads to highly extended front positions relative to the inertialess Newtonian values, which are 0.895 for the planar case and 0.835 for the axisymmetric one. Gravity acting in the direction of flow shows the same effect, while gravity opposing the flow gives a reduced bulge of the fountain. Surface tension, slip at the wall, and compressibility, all decrease the shape of the front. Pressure-dependence of the viscosity leads to increased front position as a corresponding dimensionless parameter goes from zero (no effect) to higher values of the pressure-shift factor. The exit correction increases monotonically with inertia, compressibility, and gravity, while it decreases monotonically with slip and pressure-dependence of the viscosity. Contour plots of the primary variables (velocity-pressure) show interesting trends compared with the base case (zero values of the dimensionless parameters and of surface tension). © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


The Effect of Particle Size Distribution on Pressure Drop through Packed Beds of Cooked Wood Chips

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2005
Quak Foo Lee
Abstract The pressure drop of process liquors through columns of wood chips determines the operability, efficiency and control of both batch and continuous pulp digesters and the quality of the pulp produced from them. Pressure drop was measured through columns of industrial white spruce chips (produced with a chipping head-rig) as a function of the chip size distribution and the extent of delignification. Flow resistance depended on the porosity of the chip bed which was affected by the kappa number of the chips (which affected their flexibility) and chip size distribution, the compaction forces applied to the column, and the liquid superficial velocity. The chip beds were compressible and inelastic. Previous work from the literature using the Ergun equation to characterize pressure losses through chip beds is examined and compared with results of this work. La perte de charge des liqueurs de procédés dans des colonnes de copeaux de bois détermine l'opérabilité, l'efficacité et le contrôle des digesteurs de pâtes discontinus et continus, ainsi que la qualité de la pâte produite. La perte de charge a été mesurée dans des colonnes de copeaux d'épinette (produits avec une machine de fabrication de copeaux) en fonction de la distribution de taille des copeaux et du degré de délignification. La résistance à l'écoulement dépend de la porosité du lit de copeaux qui est influencée par le nombre de kappa des copeaux (qui influe sur leur flexibilité) et la distribution de taille des copeaux, les forces de compaction appliquées à la colonne ainsi que la vitesse de liquide superficielle. Les lits de copeaux sont compressibles et inélastiques. Un travail antérieur de la littérature scientifique faisant appel à l'équation d'Ergun pour caractériser les pertes de charge dans les lits de copeaux est examiné et comparé aux résultats du présent travail. [source]