Home About us Contact | |||
Pressure Conditions (pressure + condition)
Selected AbstractsEnhancement Boiling Heat Transfer Study of a Newly Compact In-line Bundle Evaporator under Reduced Pressure ConditionsCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 3 2006Z.-H. Liu Abstract For common flooded-type evaporators, nucleate boiling heat transfer cannot occur on the heated tubes since heat fluxes and wall superheats of heated tubes are generally quite low. However, when the tube spacing is very small, nucleate boiling in restricted spaces can occur easily under low heat flux or low wall superheat conditions. The generation of nucleate boiling can effectively enhance the heat transfer performance of bundle evaporators. This study investigated experimentally the boiling heat transfer enhancement effects of the restricted space in compact in-line tube bundles with smooth tubes under various reduced pressures. The experimental results show that the compact in-line tube bundles have a significantly enhanced heat transfer compared to those of the common tube bundles, and there is an optimum tube spacing that provides the greatest heat transfer enhancement effect. The test pressures have a marked influence on the boiling heat transfer enhancement in the compact bundles. The heat transfer enhancement effect decreases with decreasing test pressure. In addition, the heat transfer enhancement effects of the in-line tube bundles are also compared with those of the staggered bundles. Under reduced pressure, there is no significant difference between the heat transfer enhancement effects for the two types of bundles. [source] Quadratic programming algorithm for wall slip and free boundary pressure conditionINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2006C. W. Wu Abstract Wall slip is often observed in a highly sheared fluid film in a solid gap. This makes a difficulty in mathematical analysis for the hydrodynamic effect because fluid velocity at the liquid,solid interfaces is not known a priori. If the gap has a convergent,divergent wedge, a free boundary pressure condition, i.e. Reynolds pressure boundary condition, is usually used in the outlet zone in numerical solution. This paper, based on finite element method and parametric quadratic programming technique, gives a numerical solution technique for a coupled boundary non-linearity of wall slip and free boundary pressure condition. It is found that the numerical error decreases with the number of elements in a negative power law having an index larger than 2. Our method does not need an iterative process and can simultaneously gives rise to fluid film pressure distribution, wall slip velocity and surface shear stress. Wall slip always decreases the hydrodynamic pressure. Large wall slip even causes a null hydrodynamic pressure in a pure sliding solid gap. Copyright © 2005 John Wiley & Sons, Ltd. [source] Efficient preconditioning of the discrete adjoint equations for the incompressible Navier,Stokes equationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10-11 2005René Schneider Abstract Preconditioning of the discrete adjoint equations is closely related to preconditioning the linear systems arising in the Newton linearization of the discretized flow equations. We investigate the use of an optimal preconditioner for both problems on the example of a finite element discretization of the steady state incompressible Navier,Stokes equations. It is demonstrated that complications arising from the use of a zero mean pressure condition in the problem formulation can be overcome by modifying the preconditioner suitably. Copyright © 2005 John Wiley & Sons, Ltd. [source] Nanosized CdSe Particles Synthesized by an Air Pressure Solution Process Using Ethylene-Glycol-Based SolventJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2010Tao Wang Nanosized CdSe particles were synthesized at a temperature of 115°,175°C by a solution method with air pressure condition. Ethylene glycol (EG) was used as the main solvent and sodium selenite and cadmium nitrate-tetrahydrate as inorganic sources. The influence of refluxing temperature and time on growth morphology and crystallization was investigated by transmission electron microscope, high-resolution transmission electron microscope, and X-ray diffraction. The chemical reaction was deducted based on X-ray photoelectron spectra. The optical absorption property was measured by UV-vis. The CdSe nanoparticles synthesized through this EG solvent system was single wurtzite crystallization and had a nanoscale size below 15 nm diameter with a narrow size distribution. The reduction of Se4+,Se0,Se2,and the disproportionation of Se0 occurred during the synthetic process and dominated the chemical reaction. [source] A new method used to control the structure of high rate microcrystalline silicon thin filmsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 3-4 2010X. D. Zhang Abstract We report a systematic study of plasma heating effect on microcrystalline silicon (,c-Si:H) deposition. Normally, substrate surface temperature increases with time during a high rate deposition of ,c-Si:H thin film, especially under a high power and high pressure condition. We deposited ,c-Si:H films using a very high frequency discharge under the high pressure and high power condition at a fixed heater temperature or a profiled heater temperature. Raman spectra with different wavelength excitations showed that a proper heater temperature profiling during ,c-Si:H deposition is an effective method to modify the structure of ,c-Si:H films, which can control the structure evolution to form a uniform crystallinity along the growth direction and reduce the amorphous incubation layer thickness (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Respiratory units of motor production and song imitation in the zebra finchDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002Michele Franz Abstract Juvenile male zebra finches (Taeniopygia guttata) learn a stereotyped song by imitating sounds from adult male tutors. Their song is composed of a series of syllables, which are separated by silent periods. How acoustic units of song are translated into respiratory and syringeal motor gestures during the song learning process is not well understood. To learn about the respiratory contribution to the imitation process, we recorded air sac pressure in 38 male zebra finches and compared the acoustic structures and air sac pressure patterns of similar syllables qualitatively and quantitatively. Acoustic syllables correspond to expiratory pressure pulses and most often (74%) entire syllables are copied using similar air sac pressure patterns. Even notes placed within different syllables are generated with similar air sac pressure patterns when only segments of syllables are copied (9%). A few of the similar syllables (17%) are generated with a modified pressure pattern, typically involving addition or deletion of an inspiration. The high similarity of pressure patterns for like syllables indicates that generation of particular sounds is constrained to a narrow range of air sac pressure conditions. Following presentation of stroboscope flashes, song was typically interrupted at the end of an expiratory pressure pulse, confirming that expirations and, therefore, syllables are the smallest unit of motor production of song. Silent periods, which separate syllables acoustically, are generated by switching from expiration to inspiration. Switching between respiratory phases, therefore, appears to play a dominant role in organizing the stereotyped motor program for song production. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 129,141, 2002 [source] Evaluation of an action threshold-based IPM wheat model in Rheinland (Germany) in 1999/2001,EPPO BULLETIN, Issue 3 2003M. Heger Under the specific agricultural and climatic conditions of Rheinland (DE), 48 field trials in three years demonstrated the practicability of the action threshold-based fungicide strategy of the IPM wheat model. The underlying data for action thresholds and dosage of fungicides applied are outlined. The cereal pathogens concerned, predominantly Mycosphaerella graminicola and Puccinia recondita, were controlled in the early stages of epidemic development using reduced rates of fungicides. The IPM wheat model gave a high efficacy of control, in terms of disease incidence and disease severity, under both low and high disease pressure conditions. The yield levels resulting from this effective reduction in diseases were nearly the same as those of the disease-free variant. Total yield increase varied between 15% and 30% with an overall average of around 20%, and resulted in monetary benefits of 50,100 EUR ha,1 in the years considered. [source] Attitude-behaviour consistency: the role of group norms, attitude accessibility, and mode of behavioural decision-makingEUROPEAN JOURNAL OF SOCIAL PSYCHOLOGY, Issue 5 2003Joanne R. Smith The interplay between two perspectives that have recently been applied in the attitude area,the social identity approach to attitude-behaviour relations (Terry & Hogg, 1996) and the MODE model (Fazio, 1990a),was examined in the present research. Two experimental studies were conducted to examine the role of group norms, group identification, attitude accessibility, and mode of behavioural decision-making in the attitude-behaviour relationship. In Study 1 (N,=,211), the effects of norms and identification on attitude-behaviour consistency as a function of attitude accessibility and mood were investigated. Study 2 (N,=,354) replicated and extended the first experiment by using time pressure to manipulate mode of behavioural decision-making. As expected, the effects of norm congruency varied as a function of identification and mode of behavioural decision-making. Under conditions assumed to promote deliberative processing (neutral mood/low time pressure), high identifiers behaved in a manner consistent with the norm. No effects emerged under positive mood and high time pressure conditions. In Study 2, there was evidence that exposure to an attitude-incongruent norm resulted in attitude change only under low accessibility conditions. The results of these studies highlight the powerful role of group norms in directing individual behaviour and suggest limited support for the MODE model in this context. Copyright © 2003 John Wiley & Sons, Ltd. [source] New insights from reactive transport modelling: the formation of the sericitic vein envelopes during early hydrothermal alteration at Butte, MontanaGEOFLUIDS (ELECTRONIC), Issue 3 2002S. Geiger Abstract A reactive transport computer code has been employed to model hydrothermal alteration of a granitoid rock bordering a discrete vein channel. The model suggests that the grey sericitic and sericitic with remnant biotite alteration envelopes at the porphyry copper deposit at Butte, Montana, can be formed by a reducing, low pH, and low salinity fluid under constant temperature and pressure conditions of approximately 400 °C and less than 100 MPa during a time span of approximately 100 years or less. Hydrothermal alteration has little effect on the porosity of the host rock (Butte Quartz Monzonite), and the diffusivity of the aqueous species also changes little. A sequence of mineral reaction fronts characterizes the alteration envelopes. The biotite dissolution front occurs closest to the vein channel and marks the transition from the grey sericitic to sericitic with remnant biotite envelope. The plagioclase dissolution front occurs farthest into the matrix and marks the edge of relatively fresh Butte Quartz Monzonite. From the properties of the quasi-stationary state approximation (Lichtner 1988; Lichtner 1991), it follows that once the sequence of reaction fronts is fully established, their relative locations remain constant and the widths of the reaction zones increase with the square root of time. [source] High-pressure mineral assemblage in granitic rocks from continental units, Alpine Corsica, FranceGEOLOGICAL JOURNAL, Issue 1 2006Alessandro Malasoma Abstract The Popolasca,Francardo area of northern Corsica contains an assemblage of continental tectonic units affected by an Alpine deformation. In one of these units, Unit II, previously regarded as weakly metamorphosed, a metamorphic mineral assemblage characterized by sodic amphibole, phengite, quartz, albite and epidote has been found in an aplite dyke that cuts the dominant granitoids. Peak-metamorphic temperature and pressure conditions of 300,370°C and 0.50,0.80,GPa, respectively, have been determined. This finding indicates that a continuous belt of continental slices, characterized by high-pressure, low-temperature metamorphism of Tertiary age, extends from the Tenda Massif in the north to the Corte area in the south, thus placing additional constraints on the tectonic evolution of Alpine Corsica. Copyright © 2005 John Wiley & Sons, Ltd. [source] A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfacesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2008Michele Calvello Abstract A numerical model to predict landslide movements along pre-existing slip surfaces from rainfall data is presented. The model comprises: a transient seepage finite-element analysis to compute the variations of pore water pressures due to rainfall; a limit equilibrium stability analysis to compute the factors of safety along the slip surface associated with transient pore pressure conditions; an empirical relationship between the factor of safety and the rate of displacement of the slide along the slip surface; an optimization algorithm for the calibration of analyses and relationships based on available monitoring data. The model is validated with reference to a well-monitored active slide in central Italy, characterized by very slow movements occurring within a narrow band of weathered bedrock overlaid by a clayey silt colluvial cover. The model is conveniently divided and presented in two parts: a groundwater model and a kinematic model. In the first part, monthly recorded rainfall data are used as time-dependent flow boundary conditions of the transient seepage analysis, while piezometric levels are used to calibrate the analysis by minimizing the errors between monitoring data and computed pore pressures. In the second part, measured inclinometric movements are used to calibrate the empirical relationship between the rate of displacement along the slip surface and the factor of safety, whose variation with time is computed by a time-dependent stability analysis. Copyright © 2007 John Wiley & Sons, Ltd. [source] Pressure and gas composition effects on the operation of the pulsed flame photometric detectorISRAEL JOURNAL OF CHEMISTRY, Issue 2 2001Gad Frishman The effect of pressure and hydrogen/oxygen ratio of a burning gas mixture on pulsed flame emission time-dependence was investigated in the range of 0.1,5 atm using a specially designed pulsed flame photometric detector (PFPD). We studied the pressure and gas composition effect on the pulsed flame delayed light emission of sulfur, phosphorus, and nitrogen-containing organic compounds. The optimal pressure conditions for nitrogen detection, intensity, and emission time delay was found to be 0.4 bar, at which the detection sensitivity could be improved by a factor of 2. For phosphorus, the optimal pressure obtained was 1.3 bar with 40% sensitivity improvement (compared with 1 bar). In the case of sulfur detection, two emission maxima were obtained, at 1.1 and 0.6 bar, at H/O ratio of 5. Increasing the H/O ratio resulted in the appearance of only one peak at 1 bar, and enhancement of the sensitivity by a factor of 2.4 at H/O ratio of 10.3. From the analytical point of view, we found that emission intensity is practically unchanged by the pressure and the H/O ratio for all three elements investigated in the range of 0.8,1.1 bar and H/O of 5,6. Thus, in addition to excellent sensitivity and improved selectivity, the PFPD can be applied under a variety of atmospheric pressure conditions in field environmental applications. [source] Synchrotron texture analysis with area detectorsJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2003H.-R. Wenk The wide availability of X-ray area detectors provides an opportunity for using synchrotron radiation based X-ray diffraction for the determination of preferred crystallite orientation in polycrystalline materials. These measurements are very fast compared to other techniques. Texture is immediately recognized as intensity variations along Debye rings in diffraction images, yet in many cases this information is not used because the quantitative treatment of texture information has not yet been developed into a standard technique. In special cases it is possible to interpret the texture information contained in these intensity variations intuitively. However, diffraction studies focused on the effects of texture on materials properties often require the full orientation distribution function (ODF) which can be obtained from spherical tomography analysis. In cases of high crystal symmetry (cubic and hexagonal) an approximation to the full ODF can be reconstructed from single diffraction images, as is demonstrated for textures in rolled copper and titanium sheets. Combined with area detectors, the reconstruction methods make the measurements fast enough to study orientation changes during phase transformations, recrystallization and deformation in situ, and even in real time, at a wide range of temperature and pressure conditions. The present work focuses on practical aspects of texture measurement and data processing procedures to make the latter available for the growing community of synchrotron users. It reviews previous applications and highlights some opportunities for synchrotron texture analysis based on case studies on different materials. [source] Paxillin modulates squamous cancer cell adhesion and is important in pressure-augmented adhesionJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006William C. Conway Abstract Paxillin is an adapter protein regulating signaling and focal adhesion assembly that has been linked to malignant potential in many malignancies. Overexpression of paxillin has been noted in aggressive tumors. Integrin-mediated binding through the focal adhesion complex is important in metastatic adhesion and is upregulated by extracellular pressure in malignant colonocytes through FAK and Src activation. Neither head and neck cancers nor paxillin have been studied in this regard. We hypothesized that paxillin would play a role in modulating squamous cancer adhesion both at baseline and under conditions of increased extracellular pressure. Using SCC25 tongue squamous cancer cells stably transfected with either an empty selection vector or paxillin expression and selection vectors, we studied adhesion to collagen, paxillin, FAK, and Src expression and phosphorylation in cells maintained for 30 min under ambient or 15 mmHg increased pressure conditions. Paxillin-overexpressing cells exhibited adhesion 121,±,2.9% of that observed in vector-only cells (n,=,6, P,<,0.001) under ambient pressure. Paxillin-overexpression reduced FAK phosphorylation. Pressure stimulated adhesion to 118,±,2.3% (n,=,6, P,<,0.001) of baseline in vector-only cells, similar to its effect in the parental line, and induced paxillin, FAK, and Src phosphorylation. However, increased pressure did not stimulate adhesion or phosphorylate paxillin, FAK, or Src further in paxillin-overexpressing cells. Metastasizing squamous cancer cell adhesiveness may be increased by paxillin-overexpression or by paxillin activation by extracellular pressure during surgical manipulation or growth within a constraining compartment. Targeting paxillin in patients with malignancy and minimal tumor manipulation during surgical resection may be important therapeutic adjuncts. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source] Microwave-accelerated synthesis of psychoactive deuterated N,N -dialkylated-[,,,,,,, -d4]-tryptaminesJOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 14 2008Simon D. Brandt Abstract A large number of N,N -dialkylated tryptamines are known to induce psychoactive effects in humans. This has resulted in their increased attention within clinical and forensic communities. Deuterated tryptamines are ideal for use as internal standards during MS bioanalysis or of use in biochemical NMR studies. The present study reports on a microwave-enhanced synthesis of 22 N,N -dialkylated-[,,,,,,, -d4]-tryptamines via the reduction with lithium aluminium deuteride of glyoxalylamide precursors obtained by the procedure of Speeter and Anthony. Syntheses were carried out using a single-mode system under elevated pressure conditions where anhydrous tetrahydrofuran was used as the solvent at 150°C. Good yields were obtained within 5,min. Copyright © 2008 John Wiley & Sons, Ltd. [source] Refining the P,T records of UHT crustal metamorphismJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2008S. L. HARLEY Abstract Ultra-high-temperature (UHT) metamorphism occurs when the continental crust is subjected to temperatures of greater than 900 °C at depths of 20,40 km. UHT metamorphism provides evidence that major tectonic processes may operate under thermal conditions more extreme than those generally produced in numerical models of orogenesis. Evidence for UHT metamorphism is recorded in mineral assemblages formed in magnesian pelites, supported by high-temperature indicators including mesoperthitic feldspar, aluminous orthopyroxene and high Zr contents in rutile. Recent theoretical, experimental and thermodynamic data set constraints on metamorphic phase equilibria in FMAS, KFMASH and more complex chemical systems have greatly improved quantification of the P,T conditions and paths of UHT metamorphic belts. However, despite these advances key issues that remain to be addressed include improving experimental constraints on the thermodynamic properties of sapphirine, quantifying the effects of oxidation state on sapphirine, orthopyroxene and spinel stabilities and quantifying the effects of H2O,CO2 in cordierite on phase equilibria and reaction texture analysis. These areas of uncertainty mean that UHT mineral assemblages must still be examined using theoretical and semi-quantitative approaches, such as P(,T),, sections, and conventional thermobarometry in concert with calculated phase equilibrium methods. In the cases of UHT terranes that preserve microtextural and mineral assemblage evidence for steep or ,near-isothermal' decompression P,T paths, the presence of H2O and CO2 in cordierite is critical to estimates of the P,T path slopes, the pressures at which reaction textures have formed and the impact of fluid infiltration. Many UHT terranes have evolved from peak P,T conditions of 8,11 kbar and 900,1030 °C to lower pressure conditions of 8 to 6 kbar whilst still at temperature in the range of 950 to 800 °C. These decompressional P,T paths, with characteristic dP/dT gradients of ,25 ± 10 bar °C,1, are similar in broad shape to those generated in deep-crustal channel flow models for the later stages of orogenic collapse, but lie at significantly higher temperatures for any specified pressure. This thermal gap presents a key challenge in the tectonic modelling of UHT metamorphism, with implications for the evolution of the crust, sub-crustal lithosphere and asthenospheric mantle during the development of hot orogens. [source] Timing and nature of fluid flow and alteration during Mesoproterozoic shear zone formation, Olary Domain, South AustraliaJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2005C. CLARK Abstract The development of shear zones at mid-crustal levels in the Proterozoic Willyama Supergroup was synchronous with widespread fluid flow resulting in albitization and calcsilicate alteration. Monazite dating of shear zone fabrics reveal that they formed at 1582 ± 22 Ma, at the end of the Olarian D3 deformational event and immediately prior to the emplacement of regional S-type granites. Two stages of fluid flow are identified in the area: first an albitizing event which involved the addition of Na and loss of Si, K and Fe; and a second phase of calcsilicate alteration with additions of Ca, Fe, Mg and Si and removal of Na. Fluid fluxes calculated for albitization and calcsilicate alteration were 5.56 × 109 to 1.02 × 1010 mol m,2 and 2.57 × 108,5.20 × 109 mol m,2 respectively. These fluxes are consistent with estimates for fluid flow through mid-crustal shear zones in other terranes. The fluids associated with shearing and alteration are calculated to have ,18O and ,D values ranging between +8 and +11,, and ,33 and ,42,, respectively, and ,Nd values between ,2.24 and ,8.11. Our results indicate that fluids were derived from metamorphic dehydration of the Willyama Supergroup metasediments. Fluid generation occurred during prograde metamorphism of deeper crustal rocks at or near peak pressure conditions. Shear zones acted as conduits for major crustal fluid flow to shallow levels where peak metamorphic conditions had been attained earlier leading to the apparent ,retrograde' fluid-flow event. Thus, the peak metamorphism conditions at upper and lower crustal levels were achieved at differing times, prior to regional granite formation, during the same orogenic cycle leading to the formation of retrograde mineral assemblages during shearing. [source] P,T evolution of glaucophane,omphacite bearing HP,LT rocks in the western Tianshan Orogen, NW China:new evidence for ,Alpine-type' tectonicsJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2002R. Klemd Abstract The late Palaeozoic western Tianshan high-pressure /low-temperature belt extends for about 200 km along the south-central Tianshan suture zone and is composed mainly of blueschist, eclogite and epidote amphibolite/greenschist facies rocks. P,T conditions of mafic garnet omphacite and garnet,omphacite blueschist, which are interlayered with eclogite, were investigated in order to establish an exhumation path for these high-pressure rocks. Maximum pressure conditions are represented by the assemblage garnet,omphacite,paragonite,phengite,glaucophane,quartz,rutile. Estimated maximum pressures range between 18 and 21 kbar at temperatures between 490 and 570 °C. Decompression caused the destabilization of omphacite, garnet and glaucophane to albite, Ca-amphibole and chlorite. The post-eclogite facies metamorphic conditions between 9 and 14 kbar at 480,570 °C suggest an almost isothermal decompression from eclogite to epidote,amphibolite facies conditions. Prograde growth zoning and mineral inclusions in garnet as well as post-eclogite facies conditions are evidence for a clockwise P,T path. Analysis of phase diagrams constrains the P,T path to more or less isothermal cooling which is well corroborated by the results of geothermobarometry and mineral textures. This implies that the high-pressure rocks from the western Tianshan Orogen formed in a tectonic regime similar to ,Alpine-type' tectonics. This contradicts previous models which favour ,Franciscan-type' tectonics for the southern Tianshan high-pressure rocks. [source] Neoproterozoic high-pressure/low-temperature metamorphic rocks in the Avalon terrane, southern New Brunswick, CanadaJOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2001C. E. White Abstract High -P/low -T metamorphic rocks of the Hammondvale metamorphic suite (HMS) are exposed in an area of 10 km2 on the NW margin of the Caledonian (Avalon) terrane in southern New Brunswick, Canada. The HMS is in faulted contact on the SE with c. 560,550 Ma volcanic and sedimentary rocks and co-magmatic plutonic units of the Caledonian terrane. The HMS consists of albite- and garnet-porphyroblastic mica schist, with minor marble, calc-silicate rocks and quartzite. Pressure and temperature estimates from metamorphic assemblages in the mica schist and calc-silicate rocks using TWQ indicate that peak pressure conditions were 12.4 kbar at 430 °C. Peak temperature conditions were 580 °C at 9.0 kbar. 40Ar/39Ar muscovite ages from three samples range up to 618,615 Ma, a minimum age for high -P/low- T metamorphism in this unit. These ages indicate that the HMS is related to the c. 625,600 Ma subduction-generated volcanic and plutonic units exposed to the SE in the Caledonian terrane. The ages are also similar to those obtained from detrital muscovite in a Neoproterozoic-Cambrian sedimentary sequence in the Caledonian terrane, suggesting that the HMS was exposed by latest Neoproterozoic time and supplied detritus to the sedimentary units. The HMS is interpreted to represent a fragment of an accretionary complex, similar to the Sanbagawa Belt in Japan. It confirms the presence of a major cryptic suture between the Avalon terrane sensu stricto and the now-adjacent Brookville terrane. [source] Molecular thermodynamics of asphaltene precipitation in reservoir fluidsAICHE JOURNAL, Issue 1 2000Jianzhong Wu A previously described molecular-thermodynamic framework, based on colloid theory, is used to correlate experimental asphaltene-precipitation data at high-temperature and pressure conditions. In this framework, asphaltenes and resins are represented by pseudopure components, and all other components in a crude oil are presented by a continuous medium that affects van der Waals attractions among asphaltene and resin molecules. Model parameters are evaluated systematically from average properties of asphaltenes and resins in crude oils, and from dispersion-force properties of the oil medium. Given the composition of the medium, and asphaltene and resin concentrations, the molecular-thermodynamic model described here can be used to identify the onset of asphaltene precipitation, and the total amount of precipitation at the given operation conditions. Calculated results for the effects of oil composition and pressure on asphaltene precipitation are in good agreement with at least some experimental measurements for four reservoir fluids, including Texaco, Shell, Weyburn, and North-Sea crude oils. [source] Kinetic measurements from in situ TEM observationsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2009Renu Sharma Abstract Environmental transmission or scanning transmission electron microscope is ideally suited to observe gas solid interactions at nanoscale. It is shown that the time and temperature resolved data, obtained from in situ observations, can be used to obtain reaction rates and understand the kinetics of the processes. Low or high magnification images provide the change in length, area or volume with time at constant temperature and pressure conditions during nitridation of Cu,Cr thin films, deposition of Au particles, growth of Si nanowire and carbon nanotubes. Effect of electron beam is estimated by making observations with and without constant electron beam exposure. Quantitative electron energy loss spectroscopy is employed to measure the reduction rate of Ce+4 in pure ceria, mixed oxides (ceria-zirconia) and catalyst (Rh-ceria-zirconia) powders. Microsc. Res. Tech. 2009. © 2009 Wiley-Liss, Inc. [source] Resistant macromolecules of extant and fossil microalgaePHYCOLOGICAL RESEARCH, Issue 4 2004Gerard J. M. Versteegh SUMMARY The occurrence and composition of macromolecular resistant walls of microalgae and their fossil macromolecular counterparts are reviewed. To date, several algal groups have been identified to produce fossilizable biomacromolecules. Only two biosynthetic pathways seem to be responsible for this, of which the acetate/malate pathway used by Chlorophyta, Eustigmatophyta and Dinophyta is considered to lead to a series of closely related resistant biomacromolecules, called algaenans. Algaenans consist of a network of predominantly linear carbon chains. A different, as yet unidentified, pathway is used by the Dinophyta to produce the aromatic walls of their cysts. The poly-ketide or acetogenic pathway may have been responsible for resorcinol-based algae or bacteria-derived microfossils of the acritarch Gloeocapsamorpha prisca, either through synthesis of the biomacromolecule or through a third pathway, the post-mortem polymerization of its resorcinol lipids. The postmortem polymerization of lipids also appears to be responsible for the formation of fatty acid-based macromolecules in Eocene dinoflagellate-shaped remains from Pakistan. Finally, there is a clear need for elucidating the chemical differences between the biomacromolecules produced by the algae and their fossil analogs in the sediments. This notably applies to the release and condensation of aliphatic and aromatic moieties both at normal and at elevated temperature and pressure conditions. [source] Optimal pressure conditions for unbiased external ion accumulation in a two-dimensional radio-frequency quadrupole for Fourier transform ion cyclotron resonance mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 21 2001Mikhail E. Belov When combined with on-line separations (e.g., capillary liquid chromatography (LC)), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) provides a powerful tool for biological applications, and particularly proteomic studies. The sensitivity, dynamic range, and duty cycle provided by FTICR-MS have been shown to be increased by ion trapping and accumulation in a two-dimensional (2D) radio-frequency (rf)-only multipole positioned externally to an FTICR cell. However, it is important that ions be detected across the desired m/z range without a significant bias. In this work we found that pressure inside the accumulation rf-quadrupole plays an important role in obtaining ,unbiased' ion accumulation. Pressure optimization was performed in both pulsed and continuous modes. It was found that unbiased accumulation in a 2D rf-only quadrupole could be achieved in the pressure range of 5,×,10,4 to 5,×,10,3 Torr. External ion accumulation performed at the optimal pressure resulted in an increase in both the spectrum acquisition rates and dynamic range. Copyright © 2001 John Wiley & Sons, Ltd. [source] Cation Leaching from the Basalt JB,1a by 2M NaCl Hydrothermal SolutionsRESOURCE GEOLOGY, Issue 2 2000Etsuo UCHIDA The experiments were carried out using standard cold-seal pressure vessels in the temperature range from 300 to 800C under the constant pressure of 1000 bars and also in the pressure range from 500 to 1000 bars at 600°C. The concentrations of Fe, Mn, Zn and Co in the hydrothermal solutions increased significantly with increasing temperature and with decreasing pressure. The thermodynamic analysis of the experimental results suggests that this is due to the formation of trichloro-complexes and also partly due to the temperature dependence of ion exchange between augite and aqueous chloride solution. The Na concentration in the aqueous solution decreases with increasing temperature and with decreasing pressure. On the other hand, the behavior of K, Ca and Mg is complex and their concentrations seem to be controlled by the coexisting minerals. Judging from the experimental results, it is concluded that the transition elements are effectively leached from the basalt under higher temperatures and lower pressures. This means that higher temperature and lower pressure conditions are preferable for the production of ore-forming hydrothermal solutions. [source] Directly measured cabin pressure conditions during Boeing 747,400 commercial aircraft flightsRESPIROLOGY, Issue 4 2007Paul T. KELLY Background and objectives: In the low pressure environment of commercial aircraft, hypoxaemia may be common and accentuated in patients with lung or heart disease. Regulations specify a cabin pressure not lower than 750 hPa but it is not known whether this standard is met. This knowledge is important in determining the hazards of commercial flight for patients and the validity of current flight simulation tests. Methods: Using a wrist-watch recording altimeter, cabin pressure was recorded at 60 s intervals on 45 flights in Boeing 747,400 aircraft with three airlines. A log was kept of aircraft altitude using the in-flight display. Change in cabin pressure during flight, relationship between aircraft altitude and cabin pressure and proportion of flight time with cabin pressure approaching the minimum specified by regulation were determined. Results: Flight duration averaged 10 h. Average cabin pressure during flight was 846 hPa. There was a linear fall in cabin pressure as the aircraft cruising altitude increased. At 10 300 m (34 000 ft) cabin pressure was 843 hPa and changed 8 hPa for every 300 m (1000 ft) change in aircraft altitude (r2 = 0.993; P < 0.001). Lowest cabin pressure was 792 hPa at 12 200 m (40 000 ft) but during only 2% of flight time was cabin pressure less than 800 hPa. Conclusions Cabin pressure is determined only by the engineering of the aircraft and its altitude and in the present study was always higher than required by regulation. Current fitness-to-fly evaluations simulate cabin conditions that passengers will not experience on these aircraft. There may be increased risks to patients should new or older aircraft operate nearer to the present minimum standard. [source] New Pulsatile Hydrostatic Pressure Bioreactor for Vascular Tissue-engineered ConstructsARTIFICIAL ORGANS, Issue 2 2010Faisal M. Shaikh Abstract Mechanical conditioning represents a potential means to enhance the biochemical and biomechanical properties of tissue-engineered cell constructs. Bioreactors that can simulate physiologic conditions can play an important role in the preparation of tissue-engineered constructs. Although various forms of bioreactor systems are currently available, these have certain limitations, particularly when these are used for the creation of vascular constructs. The aim of the present report is to describe and validate a novel pressure bioreactor system for the creation of vascular tissue. Here, we present and discuss the design concepts, criteria, as well as the development of a novel pressure bioreactor. The system is compact and easily housed in an incubator to maintain sterility of the construct. Moreover, the proposed bioreactor, in addition to mimicking in vivo pressure conditions, is flexible, allowing different types of constructs to be exposed to various physiologic pressure conditions. The core bioreactor elements can be easily sterilized and have good ergonomic assembly characteristics. This system is a fundamental tool, which may enable us to make further advances in bioreactor technology and tissue engineering. The novel system allows for the application of pressure that may facilitate the growth and development of constructs needed to produce a tissue-engineered vascular graft. [source] Changes in Vein Dynamics Ranging from Low to High Pressure Levels as a Determinant of the Differences in Vein Adaptation to Arterial Hemodynamic ConditionsARTIFICIAL ORGANS, Issue 7 2007Yanina Zócalo Abstract:, The causes of the regional differences in venous grafts patency rates are partially understood. Differences in vein dynamics during physiological situations could determine differences in veins' capability to face arterial conditions and could contribute to the dissimilar performance of veins as arterial grafts. In vitro pressure and diameter were measured in four different veins during physiological and arterial (graft) pressure conditions. A diameter,pressure transfer function was designed. Compliance, viscous and inertial properties; circumferential stresses and deformation; and buffering function were calculated. Regional differences in veins' dynamics, but not in buffering function were found during physiological and arterial conditions. The back vein (femoral) showed the least changes when submitted to arterial conditions. Arterial conditions represent different changes in vein dynamics depending on the segment considered. The regional differences in vein dynamics, both at physiological and graft conditions, could contribute to explain the dissimilar results of venous grafts. [source] Exploiting the intracellular compartmentalization characteristics of the S. cerevisiae host cell for enhancing primary purification of lipid-envelope virus-like particlesBIOTECHNOLOGY PROGRESS, Issue 1 2010Gaik Sui Kee Abstract This article demonstrates how the intracellular compartmentalization of the S. cerevisiae host cell can be exploited to impart selectivity during the primary purification of lipid-envelope virus-like particles (VLPs). The hepatitis B surface antigen (HBsAg) was used as the VLP model in this study. Expressed HBsAg remain localized on the endoplasmic reticulum and the recovery process involves treating cell homogenate with a detergent for HBsAg liberation. In our proposed strategy, a centrifugation step is introduced immediately following cell disruption but prior to the addition of detergent to allow the elimination of bulk cytosolic contaminants in the supernatant, achieving ,70% reduction of contaminating yeast proteins, lipids, and nucleic acids. Recovery and subsequent treatment of the solids fraction with detergent then releases the HBsAg into a significantly enriched product stream with a yield of ,80%. The selectivity of this approach is further enhanced by operating under moderate homogenization pressure conditions (,400 bar). Observed improvements in the recovery of active HBsAg and reduction of contaminating host lipids were attributed to the low-shear conditions experienced by the HBsAg product and reduced cell fragmentation, which led to lower coextraction of lipids during the detergent step. As a result of the cleaner process stream, the level of product capture during the loading stage of a downstream hydrophobic interaction chromatography stage increased by two-fold leading to a concomitant increase in the chromatography step yield. The lower level of exposure to contaminants is also expected to improve column integrity and lifespan. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Prediction of ice content in biological model solutions when frozen under high pressureBIOTECHNOLOGY PROGRESS, Issue 2 2009B. Guignon Abstract High pressure is, at least, as effective as cryoprotective agents (CPAs) and are used for decreasing both homogenous nucleation and freezing temperatures. This fact gives rise to a great variety of possible cryopreservation processes under high pressure. They have not been optimized yet, since they are relatively recent and are mainly based on the pressure,temperature phase diagram of pure water. Very few phase diagrams of biological material are available under pressure. This is owing to the lack of suitable equipment and to the difficulties encountered in carrying out the measurements. Different aqueous solutions of salt and CPAs as biological models are studied in the range of 0°C down to -35°C, 0.1 up to 250 MPa, and 0,20% w/w total solute concentration. The phase transition curves of glycerol and of sodium chloride with either glycerol or sucrose in aqueous solutions are determined in a high hydrostatic pressure vessel. The experimental phase diagrams of binary solutions were well described by a third-degree polynomial equation. It was also shown that Robinson and Stokes' equation at high pressure succeeds in predicting the phase diagrams of both binary and ternary solutions. The solute cryoconcentration and the ice content were calculated as a function of temperature and pressure conditions during the freezing of a binary solution. This information should provide a basis upon which high-pressure cryopreservation processes may be performed and the damages derived from ice formation evaluated. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] A Preliminary Study of the Gas Hydrate Stability Zone in the South China SeaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2002JIN Chunshuang Abstract, Based on the analysis of sea-bottom temperature and geothermal gradient, and by means of the phase boundary curve of gas hydrate and the sea-bottom temperature versus water depth curve in the South China Sea, this paper studies the temperature and pressure conditions for gas hydrate to keep stable. In a marine environment, methane hydrate keeps stable at water depths greater than 550 m in the South China Sea. Further, the thickness of the gas hydrate stability zone in the South China Sea was calculated by using the phase boundary curve and temperature-depth equations. The result shows that gas hydrate have a better perspective in the southeast of the Dongsha Islands, the northeast of the Xisha Islands and the north of the Nansha Islands for thicker stability zones. [source] |