Home About us Contact | |||
Prey Composition (prey + composition)
Selected AbstractsFunctional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.)ECOLOGY OF FRESHWATER FISH, Issue 2 2010P. Gustafsson Gustafsson P, Bergman E, Greenberg LA. Functional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.).Ecology of Freshwater Fish 2010: 19: 170,177. © 2010 John Wiley & Sons A/S Abstract ,, Terrestrial invertebrate subsidies are believed to be important energy sources for drift-feeding salmonids. Despite this, size-specific use of and efficiency in procuring this resource have not been studied to any great extent. Therefore, we measured the functional responses of three size classes of wild brown trout Salmo trutta (0+, 1+ and ,2+) when fed either benthic- (Gammarus sp.) or surface-drifting prey (Musca domestica) in laboratory experiments. To test for size-specific prey preferences, both benthic and surface prey were presented simultaneously by presenting the fish with a constant density of benthic prey and a variable density of surface prey. The results showed that the functional response of 0+ trout differed significantly from the larger size classes, with 0+ fish having the lowest capture rates. Capture rates did not differ significantly between prey types. In experiments when both prey items were presented simultaneously, capture rate differed significantly between size classes, with larger trout having higher capture rates than smaller trout. However, capture rates within each size class did not change with prey density or prey composition. The two-prey experiments also showed that 1+ trout ate significantly more surface-drifting prey than 0+ trout. In contrast, there was no difference between 0+ and ,2+ trout. Analyses of the vertical position of the fish in the water column corroborated size-specific foraging results: larger trout remained in the upper part of the water column between attacks on surface prey more often than smaller trout, which tended to seek refuge at the bottom between attacks. These size-specific differences in foraging and vertical position suggest that larger trout may be able to use surface-drifting prey to a greater extent than smaller conspecifics. [source] Prey diversity, prey composition, and predator population dynamics in experimental microcosmsJOURNAL OF ANIMAL ECOLOGY, Issue 5 2000Owen L. Petchey Summary 1. Food-web complexity-stability relations are central to ecology, and many empirical studies show greater food-web complexity leads to lower population stability. Here, predator population variability decreased with increasing prey diversity in aquatic microcosm experiments, an example of greater food-web complexity leading to greater population stability. 2. Prey diversity as well as different sets of prey species within each level of prey diversity produced differences in predator population dynamics, demonstrating the importance of both prey composition and prey diversity in determining predator population stability. 3. Prey diversity can affect predator population dynamics through at least three groups of mechanisms: prey reliability, prey biomass, and prey composition mechanisms. The results suggest that greater prey reliability at higher prey diversities enhances predator stability and provide support for MacArthur (1955). [source] Ecological factors drive differentiation in wolves from British ColumbiaJOURNAL OF BIOGEOGRAPHY, Issue 8 2009Violeta Muñoz-Fuentes Abstract Aim, Limited population structure is predicted for vagile, generalist species, such as the grey wolf (Canis lupus L.). Our aims were to study how genetic variability of grey wolves was distributed in an area comprising different habitats that lay within the potential dispersal range of an individual and to make inferences about the impact of ecology on population structure. Location, British Columbia, Canada , which is characterized by a continuum of biogeoclimatic zones across which grey wolves are distributed , and adjacent areas in both Canada and Alaska, United States. Methods, We obtained mitochondrial DNA control region sequences from grey wolves from across the province and integrated our genetic results with data on phenotype, behaviour and ecology (distance, habitat and prey composition). We also compared the genetic diversity and differentiation of British Columbia grey wolves with those of other North American wolf populations. Results, We found strong genetic differentiation between adjacent populations of grey wolves from coastal and inland British Columbia. We show that the most likely factor explaining this differentiation is habitat discontinuity between the coastal and interior regions of British Columbia, as opposed to geographic distance or physical barriers to dispersal. We hypothesize that dispersing grey wolves select habitats similar to the one in which they were reared, and that this differentiation is maintained largely through behavioural mechanisms. Main conclusions, The identification of strong genetic structure on a scale within the dispersing capabilities of an individual suggests that ecological factors are driving wolf differentiation in British Columbia. Coastal wolves are highly distinct and representative of a unique ecosystem, whereas inland British Columbia grey wolves are more similar to adjacent populations of wolves located in Alaska, Alberta and Northwest Territories. Given their unique ecological, morphological, behavioural and genetic characteristics, grey wolves of coastal British Columbia should be considered an Evolutionary Significant Unit (ESU) and, consequently, warrant special conservation status. If ecology can drive differentiation in a highly mobile generalist such as the grey wolf, ecology probably drives differentiation in many other species as well. [source] Diel variation in feeding rate and prey composition of herring and mackerel in the southern Gulf of St LawrenceJOURNAL OF FISH BIOLOGY, Issue 5 2003E. Darbyson Diel feeding patterns of herring Clupea harengus and mackerel Scomber scombrus in the southern Gulf of St Lawrence were examined based on samples obtained by midwater trawling between 19 and 26 June 2001. Within 3 h time periods, stomach contents tended to be more similar between fish from the same tow than between fish from different tows. Thus, in contrast to previous diet studies, which have used individual fish stomachs as independent observations, tow was used as the experimental unit in statistical analyses in this study. Diel patterns in stomach fullness were identified using generalized additive models. Two peaks in stomach fullness occurred for herring, one in the morning and the other in the evening. Mackerel showed an increase in feeding intensity throughout the day with a peak in mid-afternoon. The diel changes in stomach contents suggested rapid gastric evacuation rates for both species, especially for herring. The estimate of the instantaneous evacuation rate for herring was twice that for mackerel. Calanus copepods (mainly C. hyperboreus), fishes (mainly capelin Mallotus villosus) and euphausiids were the main prey found in the stomachs of both species. Calanus copepods dominated the diet of herring regardless of time period. They also dominated the diet of mackerel during the late afternoon, evening and night while fishes and euphausiids were dominant during the morning and early afternoon. These diel patterns emphasize the need for sampling throughout the day and night in order to estimate ration and diet composition for bioenergetic and ecosystem models. [source] The dynamics of top-down and bottom-up effects in food webs of varying prey diversity, composition, and productivityOIKOS, Issue 2 2007Jeremy W. Fox Prey diversity is thought to mediate the strength of top-down and bottom-up effects, but few experiments directly test this hypothesis. I assembled food webs of bacteria and bacterivorous protist prey in laboratory microcosms with all combinations of five productivity levels, two top predator treatments (present or absent), and three prey compositions. Depauperate food chains contained one of two edible prey species, while more diverse food webs contained both edible prey species plus two additional less-edible/inedible prey. Equilibrium theory predicts that prey diversity should weaken the top-down and bottom-up effects on trophic level biomasses, due to density compensation among prey species. Top-down effects should increase with productivity in food chains, but decrease with productivity in food webs. Results revealed highly dynamic top-down effects, the strength of which varied more over time than among treatments. Further, top-down effects did not merely vary in absolute strength over time, but also in relative strength across different prey compositions and productivity levels. It might be expected that equilibrium models would qualitatively reproduce time-averaged results. However, time-averaged data largely failed to support equilibrium predictions. This failure may reflect strong temporal variability in treatment effects combined with nonlinear density dependence of species' per-capita growth rates. Strong temporal variability in the strength of top-down effects has not previously been demonstrated, but likely is common in nature as well. [source] |