Home About us Contact | |||
Preoviposition Period (preoviposition + period)
Selected AbstractsBiology of Bactrocera (Zeugodacus) tau (Walker) (Diptera: Tephritidae)ENTOMOLOGICAL RESEARCH, Issue 5 2010Shakti Kumar SINGH Abstract The biology of the fruit fly Bactrocera tau, an important horticultural pest, was studied under laboratory conditions at 25°C and 60,70% relative humidity on Cucurbita maxima. The duration of mating averaged 408.03 ± 235.93 min. After mating, the female fly had a preoviposition period of 11.7 ± 4.49 days. The oviposition rate was 9.9 ± 8.50 eggs and fecundity was 464.6 ± 67.98 eggs/female. Eggs were elliptical, smooth and shiny white, turning darker as hatching approached, and measured 1.30 ± 0.07 mm × 0.24 ± 0.04 mm. The chorion has polygonal microsculpturing and is species-specific with polygonal walls. The egg period lasts for 1.3 ± 0.41 days. The duration of the larval period is 1.2 ± 0.42, 1.7 ± 0.48 and 4.0 ± 0.94 days for first, second and third instars, respectively. Pupation occurs in the sand or soil and pupal periods are 7.0 ± 0.47 days. The life cycle from egg to adult was completed in 14.2 ± 1.69 days; the longevity of mated females and males was 130.33 ± 14.18 and 104.66 ± 31.21 days, respectively. At least two to three generations were observed from June 2008 to June 2009. [source] Biology and control of Dicladispa gestroi Chapuis (Col., Chrysomelidae)JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2001V. Delucchi The beetle Dicladispa gestroi is known only from Madagascar, where it is considered to be a pest of rice. Research were carried out from 1885 to 1994 in the Alaotra lake region, the main rice-producing area of the country, characterized by a warm rainy season from October to April and a cool dry season from April to October. The adult beetles invade the rice nurseries and the first direct-seeded fields at the beginning of the rainy season; they have a gregarious behaviour and their feeding activity, together with the mines bored by the larvae, determines a change of colour from green to pale yellow in the damage areas, which resemble outbreak areas of rice leafhoppers. Oviposition takes place only on young rice plants in the tillering stage. Females emerging after the end of February enter a reproductive diapause and leave the rice fields to ,hibernate'. Temperature summations for the egg, larval, and pupal development, as well as for the preoviposition period have been calculated. There is no yield loss up to a larval density of 0.6 per leaf and this economic injury level is seldom exceeded in the Alaotra lake region. Life tables carried out under field conditions show that chalcid parasitoids are the main mortality factor and are responsible for the collapse of entire outbreak areas. Since the discovery of the rice yellow mottle virus in 1989 in the Alaotra lake region and the disease transmission by chrysomelids, the pest status of D. gestroi has changed and control measures have to be applied. However, to avoid interference with the action of the parasitoids, chemical applications should be limited to rice nurseries. [source] Field and laboratory studies in a Neotropical population of the spinose ear tick, Otobius megniniMEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2009S. NAVA Abstract One ear of each of five cows on a property close to Dean Funes, province of Córdoba, Argentina, was inspected monthly from December 2004 to November 2006 to determine the presence of Otobius megnini (Dugès) and to ascertain its seasonality. Ticks were collected to study the biological parameters of larvae, nymphs and adult ticks. Groups of nymphs were also maintained at three different photoperiods at 25 °C. The abundance of immature stages was greatest during January,April and August,October in the first and second years of the study, respectively. No larvae successfully moulted. Nymphs weighing < 17 mg also failed to moult, but 89% of heavier nymphs moulted into adults. Nymphs moulting to males weighed less (49.5 ± 16.09 mg) than nymphs moulting to females (98.1 ± 34.08 mg). The pre-moult period was similar for nymphs moulting to either sex and significantly longer (P < 0.01) for female nymphs maintained at 25 °C compared with nymphs kept at 27 °C. No effect of photoperiod on the pre-moult periods of nymphs was detected. Female ticks produced a mean of 7.0 ± 1.94 egg batches after a preoviposition period of 16.4 ± 8.41 days for the first batch. The mean oviposition period was 61 ± 20.8 days and the duration of oviposition for each batch varied from 1 to 6 days. The mean number of eggs per batch was 93.1 ± 87.53. The minimum incubation period for the first egg batch was 13.6 ± 2.77 days. The total number of eggs laid by each female was 651.6 ± 288.90. Parthenogenesis was not observed. The reproductive efficiency index (REI) (number of eggs laid/weight of female in mg) was 5.5 ± 1.26. Pearson's correlations showed a significant direct relationship between the weight of the female and number of eggs laid (P < 0.01) and REI (P < 0.05). Several of the biological values presented above for the tick population from the Neotropical zoogeographic region showed marked differences to equivalent values for O. megnini populations from the U.S.A. (Nearctic) and India (Oriental). Nevertheless, the only two sequences of 16S rDNA deposited in GenBank from ticks originating in Argentina and allegedly in the U.S.A. indicate that they are conspecific (99.8% agreement). We tentatively consider the biological differences among populations of this tick species to represent adaptations for survival at different conditions. [source] Constant rate allocation in nymphal development in species of HemipteraPHYSIOLOGICAL ENTOMOLOGY, Issue 4 2003Dionyssios CH. Abstract., This study investigated the existence of rate isomorphy (the constant allocation of relative times to different stages of development under different abiotic conditions) in Macrolophus pygmaeus (Hemiptera: Miridae; a phytophagous and predatory insect). Replicated data were used from a range of temperatures regarding (i) the developmental period of each nymphal stage in relation to the total duration of nymph development, when feeding on three host plants either with different prey species or without prey, and (ii) its egg, total nymphal and preoviposition period, on two host plants, with different prey species. The proportion of time required for the development of each nymphal stage of M. pygmaeus is not different among the temperatures or the kind of food available. These proportions ranged among the different host plants, temperatures and prey presence/absence from 17.3,21.8% in the first, 14.5,18.8% in the second, 14.2,18.3% in the third, 16.5,21.0% in the fourth and from 25.4,30.6% in the fifth nymphal stage. Thus, temperature does not significantly affect the proportion of time spent in each nymphal stage and rate isomorphy exists in nymphal development. This phenomenon was also investigated using data from the literature, and it also occurs in several other Hemiptera species. Therefore, there appears to be a constant time allocation in the nymphal development of the higher taxonomic groups of insects. However, for M. pygmaeus, rate isomorphy does not hold when considering egg-to-egg development and the relative duration of times to egg hatch, total nymphal development and preoviposition period. The ecophysiological implications of this rate isomorphy phenomenon are discussed in relation to endocrinological mechanisms. Apart from its theoretical interest, the existence of rate isomorphy simplifies studies on the rate of development and the estimation of thermal constants of an insect, which are essential for the prediction of insect population dynamics. It is also proposed that the term ,rate isomorphy' does not strictly describe the phenomenon, and it is suggested that ,constant rate allocation' would be a more suitable term. [source] Tracking the decline of the once-common butterfly: delayed oviposition, demography and population genetics in the hermit Chazara briseisANIMAL CONSERVATION, Issue 2 2010T. Kadlec Abstract Large populations, seemingly not at risk of extinction, can decline rapidly due to alteration of habitat. This appears to be the case of the butterfly Chazara briseis, which is declining in all of Central and Eastern Europe, even from apparently large areas of its steppe grassland habitats. We combined mark,recapture, allozyme electrophoresis and adult behaviour observation to study the last remaining metapopulation of this once-widespread butterfly in the Czech Republic. The total population estimate was 1300 males and 1050 females in 10 colonies within a 70 km2 landscape. Adults were long-lived, and inseminated females required several weeks before they started ovipositing. Models using realistic lengths of the preoviposition period estimated that due to background mortality, only 25,55% of the female census population lived long enough to contribute to the next generation. This demographic load was unlikely to be balanced by an increased fecundity. Allozyme electrophoresis of 22 loci revealed much higher allelic variation than in most other studies of butterflies living in small populations (mean heterozygosity: 20.7%). If expressed as per individual colony, the genetic variation did not correlate with population density, survival or longevity. This was probably due to frequent movements among colonies; during 8 weeks of adult flight, 5.1% of recaptured males and 3.6% of recaptured females moved between colonies. The high preoviposition mortality indicates that populations of this species must contain more individuals compared with populations not suffering this additional demographic load. The high allelic diversity of each single colony suggests that the population as a whole has not undergone genetic bottlenecks, but now may be facing risks of inbreeding depression due to allele frequency shifts and the possible increase of weakly deleterious alleles. In the past, high effective population sizes were maintained by frequent dispersal in dense networks of steppic grasslands. Generous habitat restoration is necessary to safeguard populations of this specialized, yet formerly common species. [source] Photoperiodic and temperature control of diapause induction and colour change in the southern green stink bug Nezara viridulaPHYSIOLOGICAL ENTOMOLOGY, Issue 2 2003Dmitry L. Musolin Abstract. The effect of photoperiod and temperature on the duration of the nymphal period, diapause induction and colour change in adults of Nezara viridula (L.) (Heteroptera: Pentatomidae) from Japan was studied in the laboratory. At 20 °C, the developmental period for nymphs was significantly shorter under LD 10 : 14 h (short day) and LD 16 : 8 h (long day) than under intermediate photoperiods, whereas at 25 °C it was slightly shorter under intermediate than short- and long-day conditions. It is assumed that photoperiod-mediated acceleration of nymphal growth takes place in autumn when day-length is short and it is unlikely that nymphal development is affected by day-length under summer long-day and hot conditions. Nezara viridula has an adult diapause controlled by a long-day photoperiodic response. At 20 °C and 25 °C in both sexes, photoperiodic responses were similar and had thresholds close to 12.5 h, thus suggesting that the response is thermostable within this range of temperatures and day-length plays a leading role in diapause induction. Precopulation and preoviposition periods were significantly longer under near-critical regimes than under long-day ones. Short-day and near-critical photoperiods induced a gradual change of adult colour from green to brown/russet. The rate of colour change was significantly higher under LD 10 : 14 h than under LD 13 : 11 h, suggesting that the colour change is strongly associated with diapause induction. The incidences of diapause or dark colour did not vary among genetically determined colour morphs, indicating that these morphs have a similar tendency to enter diapause and change colour in response to short-day conditions. [source] |