Preoptic Area (preoptic + area)

Distribution by Scientific Domains

Kinds of Preoptic Area

  • medial preoptic area


  • Selected Abstracts


    Neurokinin 3 Receptor Immunoreactivity in the Septal Region, Preoptic Area and Hypothalamus of the Female Sheep: Colocalisation in Neurokinin B Cells of the Arcuate Nucleus but not in Gonadotrophin-Releasing Hormone Neurones

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2010
    M. Amstalden
    Recent evidence has implicated neurokinin B (NKB) in the complex neuronal network mediating the effects of gonadal steroids on the regulation of gonadotrophin-releasing hormone (GnRH) secretion. Because the neurokinin 3 receptor (NK3R) is considered to mediate the effects of NKB at the cellular level, we determined the distribution of immunoreactive NK3R in the septal region, preoptic area (POA) and hypothalamus of the ewe. NK3R cells and/or fibres were found in areas including the bed nucleus of the stria terminalis, POA, anterior hypothalamic and perifornical areas, dopaminergic A15 region, dorsomedial and lateral hypothalamus, arcuate nucleus (ARC) and the ventral premammillary nucleus. We also used dual-label immunocytochemistry to determine whether a neuroanatomical basis for direct modulation of GnRH neurones by NKB was evident. No GnRH neurones at any rostral-caudal level were observed to contain NK3R immunoreactivity, although GnRH neurones and fibres were in proximity to NK3R-containing fibres. Because NKB fibres formed close contacts with NKB neurones in the ARC, we determined whether these NKB neurones also contained immunoreactive NK3R. In luteal-phase ewes, 64% ± 11 of NKB neurones colocalised NK3R. In summary, NK3R is distributed in areas of the sheep POA and hypothalamus known to be involved in the control of reproductive neuroendocrine function. Colocalisation of NK3R in NKB neurones of the ARC suggests a potential mechanism for the autoregulation of this subpopulation; however, the lack of NK3R in GnRH neurones suggests that the actions of NKB on GnRH neurosecretory activity in the ewe are mediated indirectly via other neurones and/or neuropeptides. [source]


    Sex Differences and the Roles of Sex Steroids in Apoptosis of Sexually Dimorphic Nuclei of the Preoptic Area in Postnatal Rats

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2009
    S. Tsukahara
    The brain contains several sexually dimorphic nuclei that exhibit sex differences with respect to cell number. It is likely that the control of cell number by apoptotic cell death in the developing brain contributes to creating sex differences in cell number in sexually dimorphic nuclei, although the mechanisms responsible for this have not been determined completely. The milieu of sex steroids in the developing brain affects sexual differentiation in the brain. The preoptic region of rats has two sexually dimorphic nuclei. The sexually dimorphic nucleus of the preoptic area (SDN-POA) has more neurones in males, whereas the anteroventral periventricular nucleus (AVPV) has a higher cell density in females. Sex differences in apoptotic cell number arise in the SDN-POA and AVPV of rats in the early postnatal period, and an inverse correlation exists between sex differences in apoptotic cell number and the number of living cells in the mature period. The SDN-POA of postnatal male rats exhibits a higher expression of anti-apoptotic Bcl-2 and lower expression of pro-apoptotic Bax compared to that in females and, as a potential result, apoptotic cell death via caspase-3 activation more frequently occurs in the SDN-POA of females. The patterns of expression of Bcl-2 and Bax in the SDN-POA of postnatal female rats are changed to male-typical ones by treatment with oestrogen, which is normally synthesised from testicular androgen and affects the developing brain in males. In the AVPV of postnatal rats, apoptotic regulation also differs between the sexes, although Bcl-2 expression is increased and Bax expression and caspase-3 activity are decreased in females. The mechanisms of apoptosis possibly contributing to the creation of sex differences in cell number and the roles of sex steroids in apoptosis are discussed. [source]


    Sex Differences in the Distribution and Abundance of Androgen Receptor mRNA-Containing Cells in the Preoptic Area and Hypothalamus of the Ram and Ewe

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2004
    C. J. Scott
    Abstract Rams and ewes show a negative-feedback response to peripheral treatment with testosterone, with both sexes having a similar degree of suppression in luteinizing hormone (LH) secretion during the breeding season. At least part of the action of testosterone to suppress gonadotropin-releasing hormone/LH secretion is exerted via interaction with an androgen receptor. The distribution of androgen receptor-containing cells in the hypothalamus has been described for the ram, but similar studies have not been performed in the ewe. In the present study, we tested the hypothesis that levels of androgen receptor mRNA expression in the preoptic area and hypothalamus would be similar in rams and ewes. Perfusion-fixed brain tissue was obtained from adult Romney Marsh ewes (luteal phase) and rams during the breeding season (n = 4/sex). Androgen receptor mRNA expression was quantified in hypothalamic sections by in situ hybridization using an 35S-labelled riboprobe and image analysis. Hybridizing cells were found in the medial preoptic area, bed nucleus of the stria terminalis, anterior hypothalamic area, ventromedial nucleus, arcuate nucleus and premamillary nucleus. The level of androgen receptor mRNA expression was higher in rams than ewes in the rostral preoptic area, caudal preoptic area and rostral portion of the bed nucleus of the stria terminalis, with no sex difference in other regions. The preoptic area and bed nucleus of the stria terminalis are important for reproductive behaviour and the sex differences in androgen receptor mRNA expression at these levels may relate to this. The high level of androgen receptor mRNA expression in the basal hypothalamus, with no sex difference, is consistent with the role of this region in the regulation of gonadotropin secretion. [source]


    Serotonergic Neurones in the Dorsal Raphe Nucleus That Project into the Medial Preoptic Area Contain Oestrogen Receptor ,

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2001
    H. Lu
    Abstract Serotonin is involved in female sexual behaviour in which the medial preoptic area (MPA) has a pivotal role. The present study used immunohistochemistry, in situ hybridization and retrograde transport analysis to investigate whether serotonin neurones in the dorsal raphe nucleus (DRN) of females projecting into the MPA contained oestrogen receptor , or ,. The projection of serotonin neurones from the DRN to the MPA was confirmed using the microinjection of Fluoro-Gold (FG), a fluorescent retrograde tracer, into the MPA of ovariectomized (OVX-group) and OVX-rats treated with oestradiol benzoate (E2-group). A number of serotonin neurones in the DRN were labelled with FG, indicating that these serotonin neurones in DRN project their terminals into the MPA. FG-labelled serotonin neurones expressed ER, mRNA in the DRN, and the number of the serotonin neurones containing ER, mRNA between the OVX-group and the E2-treated group was not significantly different. Serotonin neurones in the DRN did not express ER,-immunoreactivity. Since previous findings showed that the density of serotonin-immunoreactive fibres and the concentration of serotonin within the MPA was significantly lower in the E2-group than the OVX-group, our present observations suggested that the regulatory effects of E2 on the serotonergic neurone system in the MPA may be via ER, within the serotonin-containing cells in the DRN of female rats. [source]


    Disruption of brain development in male rats exposed prenatally to 5-bromo-2,-deoxyuridine

    CONGENITAL ANOMALIES, Issue 4 2001
    Makiko Kuwagata
    ABSTRACT, Sprague-Dawley rats were treated intraperitoneally with 5-bromo-2,-deoxyuridine (BrdU) at 0,12.5 or 50 mg/kg/day on days 9 through 15 of gestation to evaluate the effects on development of the brain of offspring. Prenatal exposure to BrdU induced abnormal development of the brain; dilatation of the lateral ventricles in male offspring in the postnatal period. The ratio of the length of the longitudinal fissure to that of the cerebral cortex decreased in a dose-dependent manner in the embryonic period and thereafter. In 14-week-old male offspring exposed prenatally to BrdU at 50 mg/kg, the cortex layer of the cerebrum was thinner than that of the controls. Masculine sexual behavior was markedly impaired and the volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) was decreased in the 50 mg/kg group as compared with the controls. These results demonstrate that prenatal exposure to BrdU affected the development of the brain hi the prenatal and postnatal stages and reduced the volume of SDN-POA after puberty, resulting in a disruption of reproductive ability in male rats. [source]


    Androgen receptor gene expression in the developing and adult zebrafish brain

    DEVELOPMENTAL DYNAMICS, Issue 10 2008
    Daniel A. Gorelick
    Abstract Androgens play a central role in the regulation of male sexual differentiation and behavior in many vertebrates, including zebrafish. Their signaling is mediated by activation of the androgen receptor. A single androgen receptor (ar) gene was recently identified in zebrafish, which encodes a protein that binds androgens in vitro. However, the tissue-specific expression pattern of this receptor in vivo has not been described. Using whole-mount RNA in situ hybridization, we characterized expression of the ar gene in developing zebrafish and in the adult brain. In embryos, transcripts were found in the presumptive pronephros and in olfactory placodes. By 3,5 days postfertilization, ar transcripts were also detected in the pineal organ anlage and the retina. In the adult brain, ar was expressed in discrete regions of the telencephalon, in the preoptic area, and throughout the periventricular hypothalamus, regions previously implicated in the regulation of sexually dimorphic behaviors in mammals. Developmental Dynamics 237:2987,2995, 2008. © 2008 Wiley-Liss, Inc. [source]


    Ontogeny of vasotocin-expressing cells in zebrafish: Selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area

    DEVELOPMENTAL DYNAMICS, Issue 4 2008
    Jennifer L. Eaton
    Abstract The neurohypophysial peptide arginine vasotocin, and its mammalian ortholog arginine vasopressin, influence a wide range of physiological and behavioral responses, including aspects of sexual and social behaviors, osmoregulation, stress response, metabolism, blood pressure, and circadian rhythms. Here, we demonstrate that, in zebrafish (Danio rerio), the vasotocin precursor gene arginine vasotocin-neurophysin (avt) is expressed in two domains in the developing embryo: the dorsal preoptic area and the ventral hypothalamus. In the dorsal preoptic area, avt -expressing cells are intermingled with isotocin-neurophysin (ist) -expressing cells, and these neurons project to the neurohypophysis (posterior pituitary). In the dorsal preoptic area, the transcriptional regulators orthopedia b (otpb) and simple-minded 1 (sim1) are required for expression of both avt and ist. In contrast, otp and sim1 are not required for avt expression in the ventral hypothalamus. Thus, the development of these two avt expression domains is influenced by separate gene regulatory networks. Developmental Dynamics 237:995,1005, 2008. © 2008 Wiley-Liss, Inc. [source]


    The zebrafish bHLH PAS transcriptional regulator, single-minded 1 (sim1), is required for isotocin cell development

    DEVELOPMENTAL DYNAMICS, Issue 8 2006
    Jennifer L. Eaton
    Abstract A wide range of physiological and behavioral processes, such as social, sexual, and maternal behaviors, learning and memory, and osmotic homeostasis are influenced by the neurohypophysial peptides oxytocin and vasopressin. Disruptions of these hormone systems have been linked to several neurobehavioral disorders, including autism, Prader-Willi syndrome, affective disorders, and obsessive-compulsive disorder. Studies in zebrafish promise to reveal the complex network of regulatory genes and signaling pathways that direct the development of oxytocin- and vasopressin-like neurons, and provide insight into factors involved in brain disorders associated with disruption of these systems. Isotocin, which is homologous to oxytocin, is expressed early, in a simple pattern in the developing zebrafish brain. Single-minded 1 (sim1), a member of the bHLH-PAS family of transcriptional regulatory genes, is required for terminal differentiation of mammalian oxytocin cells and is a master regulator of neurogenesis in Drosophila. Here we show that sim1 is expressed in the zebrafish forebrain and is required for isotocin cell development. The expression pattern of sim1 mRNA in the embryonic forebrain is dynamic and complex, and overlaps with isotocin expression in the preoptic area. We provide evidence that the role of sim1 in zebrafish neuroendocrine cell development is evolutionarily conserved with that of mammals. Developmental Dynamics 235:2071,2082, 2006. © 2006 Wiley-Liss, Inc. [source]


    Identification of prostaglandin E2 receptors mediating perinatal masculinization of adult sex behavior and neuroanatomical correlates

    DEVELOPMENTAL NEUROBIOLOGY, Issue 12 2008
    Christopher L. Wright
    Abstract Prostaglandin E2 (PGE2) mediates the organization of male rat sexual behavior and medial preoptic area (MPOA) neuroanatomy during a sensitive perinatal window. PGE2 is up-regulated in response to estradiol, and initiates a two-fold increase in dendritic spines densities on neurons. All the four receptors for PGE2 and EP1-4 are present in developing POA, a critical region controlling male sexual behavior. Previous studies explored that EP receptors are involved in PGE2-induction of neonatal levels of spinophilin protein, a surrogate marker for dendritic spine formation, but did not assess behavioral masculinization. Here, we used two approaches, suppression of EP receptor expression with antisense oligonucleotides and activation of EP receptors with selective agonists, to test which receptors are necessary and sufficient, respectively, for the effects of PGE2 on behavior and neuronal morphology. In female rats, neonatal treatment with antisense oligonucleotides against EP2 or EP4 but not EP1 or EP3 completely prevented the expression of adult behavior organized by PGE2 exposure. The effects of ONO-DI-004, ONO-AE-259-01, ONO-AE-248, and ONO-AE1-329 (EP1-4 agonists respectively) were equivalent to PGE2 treatment, which suggests activating any EP receptor neonatally suffices in masculinizing sex behavior. When given alone, not all EP agonists increased neonatal POA spinophilin levels; yet giving each agonist neonatally increased adult levels. Moreover, adult spinophilin levels significantly correlated with two measures of male sexual behavior. The body of evidence suggests that EP2 and EP4 are both necessary and sufficient for PGE2-induced masculinization of sex behavior, whereas EP1 and EP3 provide redundant roles. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source]


    Sex differences in the level of Bcl-2 family proteins and caspase-3 activation in the sexually dimorphic nuclei of the preoptic area in postnatal rats

    DEVELOPMENTAL NEUROBIOLOGY, Issue 13 2006
    Shinji Tsukahara
    Abstract In developing rats, sex differences in the number of apoptotic cells are found in the central division of the medial preoptic nucleus (MPNc), which is a significant component of the sexually dimorphic nucleus of the preoptic area, and in the anteroventral periventricular nucleus (AVPV). Specifically, male rats have more apoptotic cells in the developing AVPV, whereas females have more apoptotic cells in the developing MPNc. To determine the mechanisms for the sex differences in apoptosis in these nuclei, we compared the expression of the Bcl-2 family members and active caspase-3 in postnatal female and male rats. Western blot analyses for the Bcl-2 family proteins were performed using preoptic tissues isolated from the brain on postnatal day (PD) 1 (day of birth) or on PD8. In the AVPV-containing tissues of PD1 rats, there were significant sex differences in the level of Bcl-2 (female > male) and Bax (female < male) proteins, but not of Bcl-xL or Bad proteins. In the MPNc-containing tissues of PD8 rats, there were significant sex differences in the protein levels for Bcl-2 (female < male), Bax (female > male), and Bad (female < male), but not for Bcl-xL. Immunohistochemical analyses showed significant sex differences in the number of active caspase-3-immunoreactive cells in the AVPV on PD1 (female < male) and in the MPNc on PD8 (female > male). We further found that active caspase-3-immunoreactive cells of the AVPV and MPNc were immunoreactive for NeuN, a neuronal marker. These results suggest that there are sex differences in the induction of apoptosis via the mitochondrial pathway during development of the AVPV and MPNc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    Localization of estrogen receptor-, and -,mRNA in brain areas controlling sexual behavior in Japanese quail

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2006
    Krister Halldin
    Abstract Two estrogen receptors (ERs), denoted ER, and ER,, have been identified in humans and various animal species, including the Japanese quail. Estrogens play a key role in sexual differentiation and in activation of sexual behavior in Japanese quail. The distribution of ER, in the brain of male and female adult quail has previously been studied using immunohistochemistry, whereas in situ hybridization has been employed to study the distribution of ER, mRNA in males only. In this article, we used in situ hybridization to study the distribution of mRNAs for both ER, and ER, in brain areas controlling sexual behavior of Japanese quail. Our results show that both ER, mRNA and ER, mRNA are localized in areas important for sexual behavior, such as the preoptic area and associated limbic areas, in both males and females. Moreover, we found differences in distribution of mRNA for the two receptors in these areas. The results of this article support previously reported data and provide novel data on localization of ER mRNAs in adult quail brain of both sexes. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


    Seasonal plasticity of brain aromatase mRNA expression in glia: Divergence across sex and vocal phenotypes

    DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2005
    Paul M. Forlano
    Abstract Although teleost fishes have the highest levels of brain aromatase (estrogen synthase) compared to other vertebrates, little is known of its regulation and function in specific brain areas. Previously, we characterized the distribution of aromatase in the brain of midshipman fish, a model system for identifying the neural and endocrine basis of vocal-acoustic communication and alternative male reproductive tactics. Here, we quantified seasonal changes in brain aromatase mRNA expression in the inter- and intrasexually dimorphic sonic motor nucleus (SMN) and in the preoptic area (POA) in males and females in relation to seasonal changes in circulating steroid hormone levels and reproductive behaviors. Aromatase mRNA expression was compared within each sex throughout non-reproductive, pre-nesting, and nesting periods as well as between sexes within each season. Intrasexual (male) differences were also compared within the nesting period. Females had higher mRNA levels in the pre-nesting period when their steroid levels peaked, while acoustically courting (type I) males had highest expression during the nesting period when their steroid levels peaked. Females had significantly higher levels of expression than type I males in all brain areas, but only during the pre-nesting period. During the nesting period, non-courting type II males had significantly higher levels of aromatase mRNA in the SMN but equivalent levels in the POA compared to type I males and females. These results demonstrate seasonal and sex differences in brain aromatase mRNA expression in a teleost fish and suggest a role for aromatase in the expression of vocal-acoustic and alternative male reproductive phenotypes. © 2005 Wiley Periodicals, Inc. J. Neurobiol, 2005 [source]


    Motivational systems and the neural circuitry of maternal behavior in the rat

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 1 2007
    Michael Numan
    Abstract Jay Rosenblatt's approach-avoidance model of maternal behavior proposes that maternal behavior occurs when the tendency to approach infant stimuli is greater than the tendency to avoid such stimuli. Our research program has uncovered neural circuits which conform to such a model. We present evidence that the medial preoptic area (MPOA: located in the rostral hypothalamus) may regulate maternal responsiveness by depressing antagonistic neural systems which promote withdrawal responses while also activating appetitive neural systems which increase the attractiveness of infant-related stimuli. These MPOA circuits are activated by the hormonal events of late pregnancy. Preoptic efferents may suppress a central aversion system which includes an amygdala to anterior hypothalamic circuit. Preoptic efferents are also shown to interact with components of the mesolimbic dopamine (DA) system to regulate proactive voluntary maternal responses. We make a distinction between specific (MPOA neurons) and nonspecific motivational systems (mesolimbic DA system) in the regulation of maternal responsiveness. © 2006 Wiley Periodicals, Inc. Dev Psychobiol 49: 12,21, 2007. [source]


    Estrogen modulates neuronal movements within the developing preoptic area,anterior hypothalamus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
    John Gabriel Knoll
    Abstract The preoptic area,anterior hypothalamus (POA-AH) is characterized by sexually dimorphic features in a number of vertebrates and is a key region of the forebrain for regulating physiological responses and sexual behaviours. Using live-cell fluorescence video microscopy with organotypic brain slices, the current study examined sex differences in the movement characteristics of neurons expressing yellow fluorescent protein (YFP) driven by the Thy-1 promoter. Cells in slices from embryonic day 14 (E14), but not E13, mice displayed significant sex differences in their basal neuronal movement characteristics. Exposure to 10 nm estradiol-17, (E2), but not 100 nm dihydrotestosterone, significantly altered cell movement characteristics within minutes of exposure, in a location-specific manner. E2 treatment decreased the rate of motion of cells located in the dorsal POA-AH but increased the frequency of movement in cells located more ventrally. These effects were consistent across age and sex. To further determine whether early-developing sex differences in the POA-AH depend upon gonadal steroids, we examined cell positions in mice with a disruption of the steroidogenic factor-1 gene, in which gonads do not form. An early-born cohort of cells were labelled with the mitotic indicator bromodeoxyuridine (BrdU) on E11. More cells were found in the POA-AH of females than males on the day of birth (P0) regardless of gonadal status. These results support the hypothesis that estrogen partially contributes to brain sexual dimorphism through its influence on cell movements during development. Estrogen's influence may be superimposed upon a pre-existing genetic bias. [source]


    Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double-labelling study

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2007
    Joyce Colussi-Mas
    Abstract The ventral tegmental area (VTA), primary source of the mesocorticolimbic dopaminergic system, is regarded as a critical site for initiation of behavioural sensitization to psychostimulants. The present study was undertaken to identify the neural pathways converging on the VTA that are potentially implicated in this process. Rats were sensitized by a single exposure to amphetamine (5 mg/kg, s.c.). The distribution of VTA-projecting neurons activated by amphetamine was examined by combining retrograde transport of the cholera toxin , subunit (CTb), injected into the VTA, with immunodetection of Fos. The quantitative analysis of CTb,Fos double labelling demonstrates that amphetamine induced a rapid activation of Fos in a large number of brain areas projecting to the VTA. More than half of the CTb,Fos double-labelled neurons were located in the prefrontal cortex, lateral preoptic area,lateral hypothalamus, pontomesencephalic tegmentum, dorsal raphe nucleus, ventral pallidum and nucleus accumbens. In addition, scattered CTb,Fos double-labelled cells were observed in many other VTA afferent structures, such as claustrum, lateral septum, diagonal band,magnocellular preoptic nucleus, deep mesencephalic nucleus, oral part of pontine reticular nucleus and dorsomedial tegmental area. This suggests that systemic amphetamine activates a wide population of neurons projecting to the VTA that may be important for the modulation of neurobehavioural plasticity produced by this psychostimulant. [source]


    Intrauterine proximity to male fetuses affects the morphology of the sexually dimorphic nucleus of the preoptic area in the adult rat brain

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2006
    Minjuan Pei
    Abstract Previous studies on polytocous rodents have revealed that the fetal intrauterine position influences its later anatomy, physiology, reproductive performance and behavior. To investigate whether the position of a fetus in the uterus modifies the development of the brain, we examined whether the structure of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of rat brains accorded to their intrauterine positions. Brain sections of adult rats gestated between two male fetuses (2M) and between two female fetuses (2F) in the uterus were analysed for their immunoreactivity to calbindin-D28k, which is a marker of the SDN-POA. The SDN-POA volume of the 2M adult males was greater than that of the 2F adult males, whereas the SDN-POA volume of the 2M and 2F adult females showed no significant difference. This result indicated that contiguous male fetuses have a masculinizing effect on the SDN-POA volume of the male. To further examine whether the increment of SDN-POA volume in adulthood was due to exposure to elevated steroid hormones during fetal life, concentrations of testosterone and 17,-estradiol in the brain were measured with 2M and 2F fetuses during gestation, respectively. On gestation day 21, the concentrations of testosterone and 17,-estradiol in the brain were significantly higher in the 2M male rats as compared with the 2F male rats. The results suggested that there was a relationship between the fetal intrauterine position, hormone transfer from adjacent fetuses and the SDN-POA volume in adult rat brains. [source]


    Evidence for vesicular glutamate transporter synapses onto gonadotropin-releasing hormone and other neurons in the rat medial preoptic area

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
    J. Kiss
    Abstract The medial preoptic area is a key structure in the control of reproduction. Several data suggest that excitatory amino acids are involved in the regulation of this function and the major site of this action is the medial preoptic region. Data concerning the neuromorphology of the glutamatergic innervation of the medial preoptic area are fragmentary. The present investigations were focused on: (i) the morphology of the vesicular glutamate transporter 1 (VGluT1)- and vesicular glutamate transporter 2 (VGluT2)-immunoreactive nerve terminals, which are considered to be specific to presumed glutamatergic neuronal elements, in the medial preoptic area of rat; and (ii) the relationship between these glutamate transporter-positive endings and the gonadotropin-releasing hormone (GnRH) neurons in the region. Single- and double-label immunocytochemistry was used at the light and electron microscopic level. There was a weak to moderate density of VGluT1- and a moderate to intense density of VGluT2-immunoreactive elements in the medial preoptic area. Electron microscopy revealed that both VGluT1- and VGluT2-immunoreactive boutons made asymmetric type synaptic contacts with unlabelled neurons. VGluT2-labelled, but not VGluT1-labelled, axon terminals established asymmetric synaptic contacts on GnRH-immunostained neurons, mainly on their dendrites. The present findings are the first electron microscopic examinations on the glutamatergic innervation of the rat medial preoptic area. They provide direct neuromorphological evidence for the existence of direct glutamatergic innervation of GnRH and other neurons in the rat medial preoptic area. [source]


    Central control of thermogenesis in mammals

    EXPERIMENTAL PHYSIOLOGY, Issue 7 2008
    Shaun F. Morrison
    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. [source]


    Evidence for non-genomic transmission of ecological information via maternal behavior in female rats

    GENES, BRAIN AND BEHAVIOR, Issue 1 2007
    J. McLeod
    Maternal behavior is flexible and programs offspring development. Using a novel manipulation, we demonstrate that rat maternal behavior is sensitive to ecologically relevant stimuli. Long-Evans hooded rat dams (F0) and pups were exposed to a predator condition (cat odor) or a control condition (no odor) for 1 h on the day of parturition. Predator-exposed F0 dams displayed significantly more maternal behavior (licking/grooming, arched-back nursing) relative to control-exposed dams across five subsequent observation days. Female offspring (F1) were raised to adulthood, bred and maternal behavior was observed. F1 dams reared by a predator-exposed F0 dam displayed significantly higher maternal behavior relative to F1 dams reared by a control-exposed F0 dam across 5 days of observation. Increased levels of maternal behavior in predator-reared (PR) F1 dams were evident even in F1 females that had been cross-fostered (CF) from a control-exposed F0 dam, suggesting a non-genomic transmission of increased levels of maternal behavior. Lactating PR F1 dams had significantly elevated estrogen receptor , and , mRNA in the medial preoptic area relative to control-reared (CR) F1 dams. Furthermore, among CR F1 dams, there was no significant difference between those dams that had been CF from predator-exposed F0 dams and those that had been sham CF. These results support the hypothesis that flexible rat maternal behavior can shape offspring development according to current environmental conditions. The results also suggest that estrogen signaling may be part of an epigenetic mechanism by which changes in maternal behavior are passed from F0 to F1 dams. [source]


    Histopathological studies on viral nervous necrosis of sevenband grouper, Epinephelus septemfasciatus Thunberg, at the grow-out stage

    JOURNAL OF FISH DISEASES, Issue 7 2004
    S Tanaka
    Abstract Viral nervous necrosis caused by sevenband grouper nervous necrosis virus (SGNNV) has occurred in grow-out stages (0,3 years old) of sevenband grouper, Epinephelus septemfasciatus, since the 1980s. In the present study, based on histopathological features of the central nervous system (CNS) in naturally diseased fish, pernasal infection experiments using grow-out fish were performed and pernasal infection was established as a putative invasion route of SGNNV. The definite SGNNV-targeted cells were determined by histopathological studies including indirect fluorescent antibody test and electron microscopy. Nerve cells in the olfactory lobe were most extensively necrotized with vacuolation followed by infiltration of microglia and macrophages. Purkinje cells and Golgi cells were extensively infected in the cerebellum. Megalocells and small nerve cell nuclei were also infected in the preoptic area, thalamus, medulla oblongata and spinal cord. Only a few small nerve cells were infected in the olfactory bulb and optic tectum. The retina of some diseased fish displayed vacuolated bipolar cells of the inner nuclear layer and in the ganglion cell layer. These SGNNV-infected nerve cells displayed viroplasmic inclusions containing virions, vacuoles and myelin-like structures. Based on observed histopathological changes, the lesion of the CNS was characterized by encephalitis but not encephalopathy. [source]


    18F-Labelled vorozole analogues as PET tracer for aromatase

    JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 5 2008
    Maria Erlandsson
    Abstract One- and two-step syntheses for the 18F-labelling of 6-[(S)-(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1-(2-[18F]fluoroethyl)-1H -benzotriazole, [18F]FVOZ, 1 and 6-[(S)-(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1-[2-(2-[18F]fluoroethoxy)ethyl]-1H -benzotriazole, [18F]FVOO, 2 were developed. In the two-step synthesis, the nucleophilic fluorination step was performed by reacting (S)-6-[(4-chlorophenyl)-(1H -1,2,4-triazol-1-yl)methyl]-1H -benzotriazole (VOZ) with either the 18F-labelled ethane-1,2-diyl bis(4-methylbenzenesulfonate) or the oxydiethane-2,1-diyl bis(4-methylbenzenesulfonate). The radiochemical yields were in the range of 9,13% after the 110,120,min total syntheses and the specific radioactivities were 175±7,GBq/µmol and 56,GBq/µmol for compounds 1 and 2, respectively. In the one-step synthesis, the precursor 2-{6-[(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1H -1,2,3-benzotriazol-1-yl}ethyl 4-methylbenzenesulfonate (7) or 1-[2-(2-bromoethoxy)ethyl]-6-[(4-chlorophenyl)(1H -1,2,4-triazol-1-yl)methyl]-1H -benzotriazole (8) was directly labelled via an 18F nucleophilic substitution to give the corresponding tracer. The labelled compounds were obtained in 36,99% radiochemical yield after 75-min syntheses. The specific radioactivities are 100,GBq/µmol for compound 1 and 80,GBq/µmol for compound 2. In vitro autoradiography using frozen rat brains illustrated specific binding in the medial amygdala, the bed nucleus of stria terminalis and the preoptic area, all of which corresponded well to the result of 11C-labelled vorozole. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Kisspeptin and the Preovulatory Gonadotrophin-Releasing Hormone/Luteinising Hormone Surge in the Ewe: Basic Aspects and Potential Applications in the Control of Ovulation

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2010
    A. Caraty
    The identification of the neural mechanisms controlling ovulation in mammals has long been a ,holy grail' over recent decades, although the recent discovery of the kisspeptin systems has totally changed our views on this subject. Kisspeptin cells are the major link between gonadal steroids and gonadotrophin-releasing hormone (GnRH) neurones. In the female rodent, kisspeptin cells of the preoptic area are involved in the positive-feedback action of oestrogen on GnRH secretion, although the picture appears more complicated in the ewe. As in rodents, activation of preoptic kisspeptin neurones accompanies the GnRH surge in the ewe but an active role for arcuate kisspeptin neurones has also been proposed. Experimentally, kisspeptin is able to restore reproductive function when the hypothalamic-hypophyseal ovarian axis is quiescent. For example, i.v. infusion of a low dose of peptide in anoestrous ewes induces an immediate and sustained release of gonadotrophin, which subsides and then provokes a luteinising hormone (LH) surge a few hours later. This pharmacological intervention induces the same hormonal changes normally observed during the follicular phase of the oestrous cycle, including the secretion of oestrogen and its negative- and positive-feedback actions on the secretion of LH and follicle-stimulating hormone. Accordingly, a high percentage of kisspeptin-infused animals ovulated. Although the multiple facets of how the kisspeptin systems modulate GnRH secretion are not totally understood, the demonstration that exogenous kisspeptin administration can induce ovulation in anovulatory animals paves the way for future therapeutic applications aiming to control reproduction. [source]


    Neurokinin 3 Receptor Immunoreactivity in the Septal Region, Preoptic Area and Hypothalamus of the Female Sheep: Colocalisation in Neurokinin B Cells of the Arcuate Nucleus but not in Gonadotrophin-Releasing Hormone Neurones

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2010
    M. Amstalden
    Recent evidence has implicated neurokinin B (NKB) in the complex neuronal network mediating the effects of gonadal steroids on the regulation of gonadotrophin-releasing hormone (GnRH) secretion. Because the neurokinin 3 receptor (NK3R) is considered to mediate the effects of NKB at the cellular level, we determined the distribution of immunoreactive NK3R in the septal region, preoptic area (POA) and hypothalamus of the ewe. NK3R cells and/or fibres were found in areas including the bed nucleus of the stria terminalis, POA, anterior hypothalamic and perifornical areas, dopaminergic A15 region, dorsomedial and lateral hypothalamus, arcuate nucleus (ARC) and the ventral premammillary nucleus. We also used dual-label immunocytochemistry to determine whether a neuroanatomical basis for direct modulation of GnRH neurones by NKB was evident. No GnRH neurones at any rostral-caudal level were observed to contain NK3R immunoreactivity, although GnRH neurones and fibres were in proximity to NK3R-containing fibres. Because NKB fibres formed close contacts with NKB neurones in the ARC, we determined whether these NKB neurones also contained immunoreactive NK3R. In luteal-phase ewes, 64% ± 11 of NKB neurones colocalised NK3R. In summary, NK3R is distributed in areas of the sheep POA and hypothalamus known to be involved in the control of reproductive neuroendocrine function. Colocalisation of NK3R in NKB neurones of the ARC suggests a potential mechanism for the autoregulation of this subpopulation; however, the lack of NK3R in GnRH neurones suggests that the actions of NKB on GnRH neurosecretory activity in the ewe are mediated indirectly via other neurones and/or neuropeptides. [source]


    Noradrenaline Involvement in the Negative-Feedback Effects of Ovarian Steroids on Luteinising Hormone Secretion

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2009
    C. V. V. Helena
    Noradrenaline has been shown to modulate the ovarian-steroid feedback on luteinising-hormone (LH) release. However, despite the high amount of evidence accumulated over many years, the role of noradrenaline in LH regulation is still not clearly understood. The present study aimed to further investigate the involvement of noradrenaline in the negative-feedback effect of oestradiol and progesterone on basal LH secretion. In experiment 1, ovariectomised (OVX) rats received a single injection of oil, oestradiol, or progesterone at 09.00,10.00 h and were decapitated 30 or 60 min later. Levels of noradrenaline and its metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), were determined in microdissections of the preoptic area (POA) and medial basal hypothalamus-median eminence (MBH-ME) and correlated with LH secretion. Basal LH levels were decreased 30 and 60 min after oestradiol or progesterone injection, and this hormonal response was significantly correlated with a reduction in POA MHPG levels, which reflect noradrenaline release. In addition, noradrenaline levels in the POA were increased, whereas noradrenaline turnover (MHPG/noradrenaline ratio) was decreased 60 min after the injection of both hormones. No effect was found in the MBH-ME. In experiment 2, i.c.v. administration of noradrenaline (60 nmol), performed 15 min before oestradiol or progesterone injection in jugular vein-cannulated OVX rats, completely prevented the ovarian steroid-induced inhibition of LH secretion. The data obtained provide direct evidence that LH secretion in OVX rats is positively regulated by basal noradrenergic activity in the POA, and its reduction appears to play a role in the negative-feedback effect of ovarian steroids on LH secretion in vivo. [source]


    Gonadotrophin-Releasing Hormone Pulse Generator Activity in the Hypothalamus of the Goat

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2009
    S. Ohkura
    Pulsatile release of gonadotrophin-releasing hormone (GnRH) is indispensable to maintain normal gonadotrophin secretion. The pulsatile secretion of GnRH is associated with synchronised electrical activity in the mediobasal hypothalamus (i.e. multiple unit activity; MUA), which is considered to reflect the rhythmic oscillations in the activity of the neuronal network that drives pulsatile GnRH secretion. However, the cellular source of this ultradian rhythm in GnRH activity is unknown. Direct input from kisspeptin neurones in the arcuate nucleus (ARC) to GnRH cell bodies in the medial preoptic area or their terminals in the median eminence could be the intrinsic source for driving the GnRH pulse generator. To determine whether kisspeptin signalling could be responsible for producing pulsatile GnRH secretion, we studied goats, measured plasma levels of luteinising hormone (LH) and recorded MUA in the posterior ARC, where the majority of kisspeptin neuronal cell bodies are located. Rhythmic volleys of MUA were found to be accompanied by LH pulses with regular intervals in the ARC, where kisspeptin neuronal cell bodies were found. Exogenous administration of kisspeptin stimulated a sustained increase in LH secretion, without influencing MUA, suggesting that the GnRH pulse generator, as reflected by MUA, originated from outside of the network of GnRH neurones, and could plausibly reflect the pacemaker activity of kisspeptin neurones, whose projections reach the median eminence where GnRH fibres project. These observations suggest that the kisspeptin neurones in the ARC may be the intrinsic source of the GnRH pulse generator. [source]


    Neonatal Lipopolysaccharide Exposure Delays Puberty and Alters Hypothalamic Kiss1 and Kiss1r mRNA Expression in the Female Rat

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2009
    A. M. I. Knox
    Immunological challenge experienced in early life can have long-term programming effects on the hypothalamic-pituitary-adrenal axis that permanently influence the stress response. Similarly, neonatal exposure to immunological stress enhances stress-induced suppression of the hypothalamic-pituitary gonadal (HPG) axis in adulthood, but may also affect earlier development, including the timing of puberty. To investigate the timing of the critical window for this programming of the HPG axis, neonatal female rats were injected with lipopolysaccharide (LPS; 50 ,g/kg i.p.) or saline on postnatal days 3 + 5, 7 + 9, or 14 + 16 and monitored for vaginal opening and first vaginal oestrus as markers of puberty. We also investigated the effects of neonatal programming on the development of the expression patterns of kisspeptin (Kiss1) and its receptor (Kiss1r) in hypothalamic sites known to contain kisspeptin-expressing neuronal populations critical to reproductive function: the medial preoptic area (mPOA) and the arcuate nucleus in neonatally-stressed animals. We determined that the critical period for a significant delay in puberty as a result of neonatal LPS exposure is before 7 days of age in the female rat, and demonstrated that Kiss1, but not Kiss1r mRNA, expression in the mPOA is down-regulated in pre-pubertal females. These data suggest that the mPOA population of kisspeptin neurones play a pivotal role in controlling the onset of puberty, and that their function can be affected by neonatal stress. [source]


    Projections of RFamide-related Peptide-3 Neurones in the Ovine Hypothalamus, with Special Reference to Regions Regulating Energy Balance and Reproduction

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2009
    Y. Qi
    RFamide-related peptide-3 (RFRP-3) is a neuropeptide produced in cells of the paraventricular nucleus and dorsomedial nucleus of the ovine hypothalamus. In the present study, we show that these cells project to cells in regions of the hypothalamus involved in energy balance and reproduction. A retrograde tracer (FluoroGold) was injected into either the arcuate nucleus, the lateral hypothalamic area or the ventromedial nucleus. The distribution and number of retrogradely-labelled RFRP-3 neurones was determined. RFRP-3 neurones projected to the lateral hypothalamic area and, to a lesser degree, to the ventromedial nucleus and the arcuate nucleus. Double-label immunohistochemistry was employed to identify cells receiving putative RFRP-3 input to cells in these target regions. RFRP-3 cells were seen to project to neuropeptide Y and pro-opiomelanocortin neurones in the arcuate nucleus, orexin and melanin-concentrating hormone neurones in the lateral hypothalamic area, as well as orexin cells in the dorsomedial nucleus and corticotrophin-releasing hormone and oxytocin cells in the paraventricular nucleus. Neurones expressing gonadotrophin-releasing hormone in the preoptic area were also seen to receive input from RFRP-3 projections. We conclude that RFRP-3 neurones project to hypothalamic regions and cells involved in regulation of energy balance and reproduction in the ovine brain. [source]


    Sex Differences and the Roles of Sex Steroids in Apoptosis of Sexually Dimorphic Nuclei of the Preoptic Area in Postnatal Rats

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2009
    S. Tsukahara
    The brain contains several sexually dimorphic nuclei that exhibit sex differences with respect to cell number. It is likely that the control of cell number by apoptotic cell death in the developing brain contributes to creating sex differences in cell number in sexually dimorphic nuclei, although the mechanisms responsible for this have not been determined completely. The milieu of sex steroids in the developing brain affects sexual differentiation in the brain. The preoptic region of rats has two sexually dimorphic nuclei. The sexually dimorphic nucleus of the preoptic area (SDN-POA) has more neurones in males, whereas the anteroventral periventricular nucleus (AVPV) has a higher cell density in females. Sex differences in apoptotic cell number arise in the SDN-POA and AVPV of rats in the early postnatal period, and an inverse correlation exists between sex differences in apoptotic cell number and the number of living cells in the mature period. The SDN-POA of postnatal male rats exhibits a higher expression of anti-apoptotic Bcl-2 and lower expression of pro-apoptotic Bax compared to that in females and, as a potential result, apoptotic cell death via caspase-3 activation more frequently occurs in the SDN-POA of females. The patterns of expression of Bcl-2 and Bax in the SDN-POA of postnatal female rats are changed to male-typical ones by treatment with oestrogen, which is normally synthesised from testicular androgen and affects the developing brain in males. In the AVPV of postnatal rats, apoptotic regulation also differs between the sexes, although Bcl-2 expression is increased and Bax expression and caspase-3 activity are decreased in females. The mechanisms of apoptosis possibly contributing to the creation of sex differences in cell number and the roles of sex steroids in apoptosis are discussed. [source]


    In Three Brain Regions Central to Maternal Behaviour, Neither Male Nor Female Phodopus Dwarf Hamsters Show Changes in Oestrogen Receptor Alpha Distribution with Mating or Parenthood

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2008
    M. E. Timonin
    Oestrogen receptor (ER), immunoreactivity in three brain regions relevant to maternal behaviour (medial preoptic area, bed nucleus of the stria terminalis and medial amygdala) was measured in two species of dwarf hamster that both mate during a postpartum oestrous but differ in expression of paternal behaviour. Male and female Phodopus campbelli and Phodopus sungorus were sampled as sexually naïve adults, following mating to satiety, and as new parents. In all brain regions, females expressed higher levels of ER, than males. Species did not have an effect on ER, distribution except in the medial amygdala, where P. sungorus females had higher expression levels than all other groups. Behavioural status was not associated with altered ER, expression. These results were not expected for females and suggest that a primary activational role for oestrogen, acting through ER, in these regions, does not generalise to maternal behaviour in Phodopus. In males, these results are consistent with previous manipulations of the ER, ligand, oestrogen, and suggest that paternal behaviour in P. campbelli is likely to be regulated by developmental effects of oestrogen on the brain during early life (similar to Microtus ochrogaster), rather than through activation by oestrogen at the time of fatherhood (similar to Peromyscus californicus). [source]


    Mechanisms Mediating Oestradiol Modulation of the Developing Brain

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2008
    M. M. McCarthy
    The brain has been known to be a sensitive target organ for the permanent organisational effects of gonadal steroids for close to 50 years. Recent advances have revealed a variety of unexpected cellular mechanisms by which steroids impact on the synaptic profile of hypothalamic nuclei critical to the control of reproduction. This review focuses on three in particular: 1) prostaglandins in the masculinisation of the preoptic area and control of male sexual behaviour; 2) GABA in the arcuate nucleus and potential control of the anterior pituitary; and 3) non-genomic activation of phosphotydolinositol 3 (PI3) kinase and glutamate in the ventromedial nucleus, which is relevant to the control of female reproductive behaviour. The importance of cell-to-cell communication, be it between neurones or between neurones and astrocytes, is highlighted as an essential principle for expanding the impact of steroids beyond those cells that express nuclear receptors. [source]