Premotor Area (premotor + area)

Distribution by Scientific Domains


Selected Abstracts


The role of the superior temporal sulcus and the mirror neuron system in imitation

HUMAN BRAIN MAPPING, Issue 9 2010
Pascal Molenberghs
Abstract It has been suggested that in humans the mirror neuron system provides a neural substrate for imitation behaviour, but the relative contributions of different brain regions to the imitation of manual actions is still a matter of debate. To investigate the role of the mirror neuron system in imitation we used fMRI to examine patterns of neural activity under four different conditions: passive observation of a pantomimed action (e.g., hammering a nail); (2) imitation of an observed action; (3) execution of an action in response to a word cue; and (4) self-selected execution of an action. A network of cortical areas, including the left supramarginal gyrus, left superior parietal lobule, left dorsal premotor area and bilateral superior temporal sulcus (STS), was significantly active across all four conditions. Crucially, within this network the STS bilaterally was the only region in which activity was significantly greater for action imitation than for the passive observation and execution conditions. We suggest that the role of the STS in imitation is not merely to passively register observed biological motion, but rather to actively represent visuomotor correspondences between one's own actions and the actions of others. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


The human mirror neuron system in a population with deficient self-awareness: An fMRI study in alexithymia

HUMAN BRAIN MAPPING, Issue 7 2009
Yoshiya Moriguchi
Abstract The mirror neuron system (MNS) is considered crucial for human imitation and language learning and provides the basis for the development of empathy and mentalizing. Alexithymia (ALEX), which refers to deficiencies in the self-awareness of emotional states, has been reported to be associated with poor ability in various aspects of social cognition such as mentalizing, cognitive empathy, and perspective-taking. Using functional magnetic resonance imaging (fMRI), we measured the hemodynamic signal to examine whether there are functional differences in the MNS activity between participants with ALEX (n = 16) and without ALEX (n = 13), in response to a classic MNS task (i.e., the observation of video clips depicting goal-directed hand movements). Both groups showed increased neural activity in the premotor and the parietal cortices during observation of hand actions. However, activation was greater for the ALEX group than the non-ALEX group. Furthermore, activation in the left premotor area was negatively correlated with perspective-taking ability as assessed with the interpersonal reactivity index. The signal in parietal cortices was negatively correlated with cognitive facets assessed by the stress coping inventory and positively correlated with the neuroticism scale from the NEO five factor personality scale. In addition, in the ALEX group, activation in the right superior parietal region showed a positive correlation with the severity of ALEX as measured by a structured interview. These results suggest that the stronger MNS-related neural response in individuals scoring high on ALEX is associated with their insufficient self-other differentiation. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc. [source]


Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement

HUMAN BRAIN MAPPING, Issue 1 2004
Ming-Xiong Huang
Abstract The role of motor activity ipsilateral to movement remains a matter of debate, due in part to discrepancies among studies in the localization of this activity, when observed, and uncertainty about its time course. The present study used magnetoencephalography (MEG) to investigate the spatial localization and temporal dynamics of contralateral and ipsilateral motor activity during the preparation of unilateral finger movements. Eight right-handed normal subjects carried out self-paced finger-lifting movements with either their dominant or nondominant hand during MEG recordings. The Multi-Start Spatial Temporal multi-dipole method was used to analyze MEG responses recorded during the movement preparation and early execution stage (,800 msec to +30 msec) of movement. Three sources were localized consistently, including a source in the contralateral primary motor area (M1) and in the supplementary motor area (SMA). A third source ipsilateral to movement was located significantly anterior, inferior, and lateral to M1, in the premotor area (PMA) (Brodmann area [BA] 6). Peak latency of the SMA and the ipsilateral PMA sources significantly preceded the peak latency of the contralateral M1 source by 60 msec and 52 msec, respectively. Peak dipole strengths of both the SMA and ipsilateral PMA sources were significantly weaker than was the contralateral M1 source, but did not differ from each other. Altogether, the results indicated that the ipsilateral motor activity was associated with premotor function, rather than activity in M1. The time courses of activation in SMA and ipsilateral PMA were consistent with their purported roles in planning movements. Hum. Brain Mapp. 23:26,39, 2004. © 2004 Wiley-Liss, Inc. [source]


Malignant transformation of supratentorial clear cell ependymoma

NEUROPATHOLOGY, Issue 3 2009
Masanori Kurimoto
Recurrence of clear cell ependymoma is not a rare condition, but malignant transformation of clear cell ependymoma has not yet been well presented. The authors report a 44-year-old man who presented with progressive right hemiparesis. A brain tumor in the left frontal premotor area was removed and an initial pathological diagnosis of oligodendroglioma was made. The tumor recurred 4 months later, and reoperation of the tumor and adjuvant local radiotherapy were performed. The patient subsequently underwent surgical removal of recurrent tumors on another four occasions (6 times in total) during a period of 11 years and finally died of the original disease. Histopathological studies of all surgical and autopsy specimens were carried out. The first and second surgical specimens did not contain any ependymal rosettes or pseudorosettes, and thus a diagnosis of oligodendroglioma was made. However, the third surgical specimen showed pseudorosettes. At this time, the tumor had an ultrastructural appearance compatible with ependymoma. Thereafter, the recurrent tumors showed anaplastic features such as nuclear pleomorphisms and necrosis with pseudopallisading. The autopsy specimens resembled a feature of glioblastoma but the tumor was sharply demarcated from the surrounding parenchyma. [source]


Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
J. P. Kuhtz-Buschbeck
Abstract Kinesthetic motor imagery and actual execution of movements share a common neural circuitry. Functional magnetic resonance imaging was used in 12 right-handed volunteers to study brain activity during motor imagery and execution of simple and complex unimanual finger movements of the dominant and the nondominant hand. In the simple task, a flexible object was rhythmically compressed between thumb, index and middle finger. The complex task was a sequential finger-to-thumb opposition movement. Premotor, posterior parietal and cerebellar regions were significantly more active during motor imagery of complex movements than during mental rehearsal of the simple task. In 10 of the subjects, we also used transcranial magnetic brain stimulation to examine corticospinal excitability during the same motor imagery tasks. Motor-evoked potentials increased significantly over values obtained in a reference condition (visual imagery) during imagery of the complex, but not of the simple movement. Imagery of finger movements of either hand activated left dorsal and ventral premotor areas and the supplementary motor cortex regardless of task complexity. The effector-independent activation of left premotor areas was particularly evident in the simple motor imagery task and suggests a left hemispherical dominance for kinesthetic movement representations in right-handed subjects. [source]


Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach

HUMAN BRAIN MAPPING, Issue 3 2006
Douglas Cheyne
Abstract We describe a novel spatial filtering approach to the localization of cortical activity accompanying voluntary movements. The synthetic aperture magnetometry (SAM) minimum-variance beamformer algorithm was used to compute spatial filters three-dimensionally over the entire brain from single trial neuromagnetic recordings of subjects performing self-paced index finger movements. Images of instantaneous source power ("event-related SAM") computed at selected latencies revealed activation of multiple cortical motor areas prior to and following left and right index finger movements in individual subjects, even in the presence of low-frequency noise (e.g., eye movements). A slow premovement motor field (MF) reaching maximal amplitude ,50 ms prior to movement onset was localized to the hand area of contralateral precentral gyrus, followed by activity in the contralateral postcentral gyrus at 40 ms, corresponding to the first movement-evoked field (MEFI). A novel finding was a second activation of the precentral gyrus at a latency of ,150 ms, corresponding to the second movement-evoked field (MEFII). Group averaging of spatially normalized images indicated additional premovement activity in the ipsilateral precentral gyrus and the left inferior parietal cortex for both left and right finger movements. Weaker activations were also observed in bilateral premotor areas and the supplementary motor area. These results show that event-related beamforming provides a robust method for studying complex patterns of time-locked cortical activity accompanying voluntary movements, and offers a new approach for the localization of multiple cortical sources derived from neuromagnetic recordings in single subject and group data. Hum. Brain Mapping 2005. © 2005 Wiley-Liss, Inc. [source]


Functional changes of the cortical motor system in hereditary spastic paraparesis

ACTA NEUROLOGICA SCANDINAVICA, Issue 3 2009
B. Koritnik
Background,,, Hereditary spastic paraparesis (HSP) is a heterogeneous group of disorders characterized by progressive bilateral lower limb spasticity. Functional imaging studies in patients with corticospinal tract involvement have shown reorganization of motor circuitry. Our study investigates functional changes in sensorimotor brain areas in patients with HSP. Methods,,, Twelve subjects with HSP and 12 healthy subjects were studied. Functional magnetic resonance imaging (fMRI) was used to measure brain activation during right-hand finger tapping. Image analysis was performed using general linear model and regions of interest (ROI)-based approach. Weighted laterality indices (wLI) and anterior/posterior indicies (wAI and wPI) were calculated for predefined ROIs. Results and discussion,,, Comparing patients and controls at the same finger-tapping rate (1.8 Hz), there was increased fMRI activation in patients' bilateral posterior parietal cortex and left primary sensorimotor cortex. No differences were found when comparing patients and controls at 80% of their individual maximum tapping rates. wLI of the primary sensorimotor cortex was significantly lower in patients. Subjects with HSP also showed a relative increase in the activation of the posterior parietal and premotor areas compared with that of the primary sensorimotor cortex. Our findings demonstrate an altered pattern of cortical activation in subjects with HSP during motor task. The increased activation probably reflects reorganization of the cortical motor system. [source]