Home About us Contact | |||
Preganglionic Neurons (preganglionic + neuron)
Selected AbstractsVGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cordTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007Ida J. Llewellyn-Smith Abstract Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. J. Comp. Neurol. 503:741,767, 2007. © 2007 Wiley-Liss, Inc. [source] C1 neurons in the rat rostral ventrolateral medulla differentially express vesicular monoamine transporter 2 in soma and axonal compartmentsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2008C. P. Sevigny Abstract Vesicular monoamine transporter 2 (VMAT2) packages biogenic amines into large dense core and synaptic vesicles for either somatodendritic or synaptic release from neurons of the CNS. Whilst the distribution of VMAT2 has been well characterized in many catecholaminergic cell groups, its localization amongst C1 adrenergic neurons in the medulla has not been examined in detail. Within the rostral ventrolateral medulla (RVLM), C1 neurons are a group of barosensitive, adrenergic neurons. Rostral C1 cells project to the thoracic spinal cord and are considered sympathetic premotor neurons. The majority of caudal C1 cells project rostrally to regions such as the hypothalamus. The present study sought to quantitate the somatodendritic expression of VMAT2 in C1 neurons, and to assess the subcellular distribution of the transporter. Immunoreactivity for VMAT2 occurred in 31% of C1 soma, with a high proportion of these in the caudal part of the RVLM. Retrograde tracing studies revealed that only two of 43 bulbospinal C1 neurons contained faint VMAT2-immunoreactivity, whilst 88 ± 5% of rostrally projecting neurons were VMAT2-positive. A lentivirus, designed to express green fluorescent protein exclusively in noradrenergic and adrenergic neurons, was injected into the RVLM to label C1 neurons. Eighty-three percent of C1 efferents that occurred in close proximity to sympathetic preganglionic neurons within the T3 intermediolateral cell column contained VMAT2-immunoreactivity. These data demonstrate differential distribution of VMAT2 within different subpopulations of C1 neurons and suggest that this might reflect differences in somatodendritic vs. synaptic release of catecholamines. [source] Maturation of postsynaptic nicotinic structures on autonomic neurons requires innervation but not cholinergic transmissionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002Sergio Kaiser Abstract Postsynaptic development at the neuromuscular junction depends on nicotinic transmission and secreted components from the presynaptic motor nerve terminal. Similarly, secreted components and synaptic activity are both thought to guide development of glutamatergic synapses in the CNS. Nicotinic synapses on chick ciliary neurons are structurally complex: a large presynaptic calyx engulfs the postsynaptic neuron and overlays a series of discrete mats of receptor-rich somatic spines tightly interwoven and folded against the soma. We used fluorescence imaging of ,7-containing nicotinic receptors and the spine constituent drebrin to monitor postsynaptic development. The results show that surgical disruption of the preganglionic input or removal of the ganglionic synaptic target tissue after synapses form in the ganglion does not disrupt the receptor-rich spine mats. Similarly, removal of the target tissue even prior to synapse formation in the ganglion does not prevent subsequent formation of the receptor clusters and associated spine constituents. Postsynaptic development is arrested, however, if normal innervation is prevented by ablating the preganglionic neurons prior to synapse formation. In this case the neurons express reduced levels of nicotinic receptors and cytoskeletal components and organize them only into early-stage clusters. Even low levels of residual innervation, however, can restore much of the normal postsynaptic receptor patterns. Chronic pharmacological blockade of cholinergic synaptic activity fails to replicate the effects of ablating the preganglionic nucleus. The results indicate that ciliary neurons are programmed to express postsynaptic components and can initiate clustering of ,7-containing receptors but need presynaptic guidance for maturation of the postsynaptic structure. [source] Differential regulation of trkA and p75 in noradrenergic pelvic autonomic ganglion cells after deafferentation of their cholinergic neighboursEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001Janet R. Keast Abstract In rats, following lesion of lumbar or sacral preganglionic axons, many pelvic ganglion cells undergo axogenesis to form baskets of terminals around select populations of nearby ganglion cells. The aim of the current study was to address mechanisms underlying initiation of this sprouting, focusing on a possible role for nerve growth factor (NGF). Immunohistochemical localization of NGF receptors (trkA and p75) showed that virtually all noradrenergic and a minority of cholinergic pelvic neurons expressed both receptors. Terminals immunoreactive for each substance were found in pelvic viscera. In pelvic ganglia, many glial cells expressed p75 but not trkA, and very few lumbar or sacral preganglionic neurons expressed either receptor. Lumbar and/or sacral preganglionic inputs were removed from ganglion cells by cutting the hypogastric, pelvic or both nerves, and tissues analysed 8 days later. Levels of receptor expression in noradrenergic pelvic ganglion cells were estimated by calculating the proportion that were receptor-immunopositive, and quantifying the intensity of trkA or p75 immunofluorescence. No lesion had a significant effect on trkA expression, however, a marked decrease in p75 occurred after cutting pelvic nerves, i.e. after deafferentation of neighbouring cholinergic neurons. These injuries appeared to cause little overall change in glial p75 expression. This study shows that manipulations that trigger sprouting from noradrenergic pelvic neurons cause downregulation of p75 but not trkA. Interestingly, this is occurring while some of their target organs are synthesizing high levels of NGF. This contrasts with other NGF-sensitive cells, in which one or both receptor types are upregulated by increased exposure to the ligand. The current study is also the first to show a change in p75 expression in neurons that are neither deafferented nor axotomized. [source] Histopathological basis of Horner's syndrome in obstetric brachial plexus palsy differs from that in adult brachial plexus injuryMUSCLE AND NERVE, Issue 5 2008Yi-Gang Huang MD Abstract Although Horner's syndrome is usually taken as an absolute indicator of avulsions of the C8 and T1 ventral roots in adult brachial plexus injury, its pathological basis in obstetric brachial plexus palsy (OBPP) is unclear. We therefore examined the morphological mechanism for the presence of Horner's syndrome in brachial plexus injury in infants and adults. Some axons of sympathetic preganglionic neurons in T1 innervate the superior cervical ganglion via the C7 ventral root in infants but not in adults. Therefore, the presence of Horner's syndrome may relate in part to avulsion of the C7 root in OBPP. These findings suggest that Horner's syndrome in OBPP is not necessarily indicative of avulsions of the C8 and T1 roots, as it can occur with avulsion of the C7 root. Muscle Nerve, 2008 [source] VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cordTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007Ida J. Llewellyn-Smith Abstract Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. J. Comp. Neurol. 503:741,767, 2007. © 2007 Wiley-Liss, Inc. [source] GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridizationTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2004Ruth L. Stornetta Abstract Electron microscopy suggests that up to half the synaptic input to sympathetic preganglionic neurons (SPGNs) is GABAergic or glycinergic. A proportion of this input is suspected to originate from neurons located within the medulla oblongata. The present study provides definitive evidence for the existence of these supraspinal presympathetic (PS) neurons with inhibitory phenotypes. PS neurons were identified by retrograde trans-synaptic migration of pseudorabies virus (PRV) injected into the adrenal gland. GABAergic or glycinergic cell bodies were identified by the presence of glutamate decarboxylase (GAD)-67 mRNA or glycine transporter (GlyT)-2 mRNA detected with in situ hybridization (ISH). Neither GABAergic nor glycinergic PS neurons were tyrosine hydroxylase (TH)-immunoreactive (ir). GABAergic PS neurons were located within the ventral gigantocellular nucleus, gigantocellular nucleus alpha, and medial reticular formation, mostly medial to the TH-ir PS neurons. About 30% of GABAergic PS neurons were serotonergic cells located in the raphe pallidus (RPa) and parapyramidal region (PPyr). Glycinergic PS neurons had the same general distribution as the GABAergic cells, except that no glycinergic neurons were located in the RPa or PPyr and none were serotonergic. PRV immunohistochemistry combined with ISH for both GlyT2 and GAD-67 mRNAs showed that at least 63% of midline medulla GABAergic PS neurons were also glycinergic and 76% of glycinergic PS neurons were GABAergic. In conclusion, the rostral ventromedial medulla contains large numbers of GABAergic and glycinergic neurons that innervate adrenal gland SPGNs. Over half of these PS neurons may release both transmitters. The physiological role of this medullary inhibitory input remains to be explored. J. Comp. Neurol. 479:257,270, 2004. © 2004 Wiley-Liss, Inc. [source] Ganglionic transmission in a vasomotor pathway studied in vivoTHE JOURNAL OF PHYSIOLOGY, Issue 9 2010Bradford Bratton Intracellular recordings were made in vivo from 40 spontaneously active cells in the third lumbar sympathetic ganglion of urethane-anaesthetized rats. In 38/40 cells ongoing action potentials showed strong cardiac rhythmicity (93.4 ± 1.9% modulation) indicating high barosensitivity and probable muscle vasoconstrictor (MVC) function. Subthreshold excitatory postsynaptic potentials (EPSPs) showed the same pattern. The 38 barosensitive neurons fired action potentials at 2.9 ± 0.3 Hz. All action potentials were triggered by EPSPs, most of which were unitary events. Calculations indicated that <5% of action potentials were triggered by summation of otherwise subthreshold EPSPs. ,Dominant' synaptic inputs with a high safety factor were identified, confirming previous work. These were active in 24/38 cells and accounted for 32% of all action potentials; other (,secondary') inputs drove the remainder. Inputs (21 dominant, 19 secondary) attributed to single preganglionic neurons fired at 1.38 ± 0.16 Hz. An average of two to three preganglionic neurons were estimated to drive each ganglion cell's action potentials. When cells were held hyperpolarized to block spiking, a range of spontaneous EPSP amplitudes was revealed. Threshold equivalent was defined as the membrane potential value that was exceeded by spontaneous EPSPs at the same frequency as the cell's original firing rate. In 10/12 cells examined, a continuum of EPSP amplitudes overlapped threshold equivalent. Small changes in cell excitability could therefore raise or lower the percentage of preganglionic inputs triggering action potentials. The results indicate that vasoconstrictor ganglion cells in vivo mostly behave not as 1:1 relays, but as continuously variable gates. [source] |