Predicted Distributions (predicted + distribution)

Distribution by Scientific Domains


Selected Abstracts


Using habitat distribution models to evaluate large-scale landscape priorities for spatially dynamic species

JOURNAL OF APPLIED ECOLOGY, Issue 1 2008
Regan Early
Summary 1Large-scale conservation planning requires the identification of priority areas in which species have a high likelihood of long-term persistence. This typically requires high spatial resolution data on species and their habitat. Such data are rarely available at a large geographical scale, so distribution modelling is often required to identify the locations of priority areas. However, distribution modelling may be difficult when a species is either not recorded, or not present, at many of the locations that are actually suitable for it. This is an inherent problem for species that exhibit metapopulation dynamics. 2Rather than basing species distribution models on species locations, we investigated the consequences of predicting the distribution of suitable habitat, and thus inferring species presence/absence. We used habitat surveys to define a vegetation category which is suitable for a threatened species that has spatially dynamic populations (the butterfly Euphydryas aurinia), and used this as the response variable in distribution models. Thus, we developed a practical strategy to obtain high resolution (1 ha) large scale conservation solutions for E. aurinia in Wales, UK. 3Habitat-based distribution models had high discriminatory power. They could generalize over a large spatial extent and on average predicted 86% of the current distribution of E. aurinia in Wales. Models based on species locations had lower discriminatory power and were poorer at generalizing throughout Wales. 4Surfaces depicting the connectivity of each grid cell were calculated for the predicted distribution of E. aurinia habitat. Connectivity surfaces provided a distance-weighted measure of the concentration of habitat in the surrounding landscape, and helped identify areas where the persistence of E. aurinia populations is expected to be highest. These identified successfully known areas of high conservation priority for E. aurinia. These connectivity surfaces allow conservation planning to take into account long-term spatial population dynamics, which would be impossible without being able to predict the species' distribution over a large spatial extent. 5Synthesis and applications. Where species location data are unsuitable for building high resolution predictive habitat distribution models, habitat data of sufficient quality can be easier to collect. We show that they can perform as well as or better than species data as a response variable. When coupled with a technique to translate distribution model predictions into landscape priority (such as connectivity calculations), we believe this approach will be a powerful tool for large-scale conservation planning. [source]


Potential distribution of the Asian disease vector Culex gelidus Theobald (Diptera: Culicidae) in Australia and New Zealand: a prediction based on climate suitability

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2005
Craig R Williams
Abstract,Culex gelidus has a wide distribution throughout Asia, where it is a vector of Japanese encephalitis. It was first detected in Australia in 1999, with archived material revealing an introduction sometime prior to 1994. It is currently widely distributed throughout northern and particularly north-eastern Australia. Using climate matching software (CLIMEX Version 1.1) and the known distribution of Cx. gelidus throughout Asia, a predicted distribution for Australasia based on current climate was developed. A potentially wide distribution throughout coastal Australia, particularly in tropical and subtropical areas, was revealed. Few inland locations were suitable, except in tropical areas of the Northern Territory and Queensland. The predicted distribution presented here is concordant with most recent collection records of Cx. gelidus in Australasia. However, there are a small number of exceptions which highlight some of the limitations of this approach for predicting mosquito distributions. The presence of Cx. gelidus in a large artificial swamp in Alice Springs is one such example. The predicted Cx. gelidus distribution incorporates highly populated areas, in which people may experience an increased risk of mosquito-borne viral encephalitis should this mosquito spread throughout its entire predicted range. [source]


Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus)

DIVERSITY AND DISTRIBUTIONS, Issue 2 2009
J. S. Thorn
ABSTRACT Aim, Data on geographical ranges are essential when defining the conservation status of a species, and in evaluating levels of human disturbance. Where locality data are deficient, presence-only ecological niche modelling (ENM) can provide insights into a species' potential distribution, and can aid in conservation planning. Presence-only ENM is especially important for rare, cryptic and nocturnal species, where absence is difficult to define. Here we applied ENM to carry out an anthropogenic risk assessment and set conservation priorities for three threatened species of Asian slow loris (Primates: Nycticebus). Location, Borneo, Java and Sumatra, Southeast Asia. Methods, Distribution models were built using maximum entropy (MaxEnt) ENM. We input 20 environmental variables comprising temperature, precipitation and altitude, along with species locality data. We clipped predicted distributions to forest cover and altitudinal data to generate remnant distributions. These were then applied to protected area (PA) and human land-use data, using specific criteria to define low-, medium- or high-risk areas. These data were analysed to pinpoint priority study sites, suitable reintroduction zones and protected area extensions. Results, A jackknife validation method indicated highly significant models for all three species with small sample sizes (n = 10 to 23 occurrences). The distribution models represented high habitat suitability within each species' geographical range. High-risk areas were most prevalent for the Javan slow loris (Nycticebus javanicus) on Java, with the highest proportion of low-risk areas for the Bornean slow loris (N. menagensis) on Borneo. Eighteen PA extensions and 23 priority survey sites were identified across the study region. Main conclusions, Discriminating areas of high habitat suitability lays the foundations for planning field studies and conservation initiatives. This study highlights potential reintroduction zones that will minimize anthropogenic threats to animals that are released. These data reiterate the conclusion of previous research, showing MaxEnt is a viable technique for modelling species distributions with small sample sizes. [source]


Potential impacts of climate change on Sub-Saharan African plant priority area selection

DIVERSITY AND DISTRIBUTIONS, Issue 6 2006
Colin J. McClean
ABSTRACT The Global Strategy for Plant Conservation (GSPC) aims to protect 50% of the most important areas for plant diversity by 2010. This study selects sets of 1-degree grid cells for 37 sub-Saharan African countries on the basis of a large database of plant species distributions. We use two reserve selection algorithms that attempt to satisfy two of the criteria set by the GSPC. The grid cells selected as important plant cells (IPCs) are compared between algorithms and in terms of country and continental rankings between cells. The conservation value of the selected grid cells are then considered in relation to their future species complement given the predicted climate change in three future periods (2025, 2055, and 2085). This analysis uses predicted climate suitability for individual species from a previous modelling exercise. We find that a country-by-country conservation approach is suitable for capturing most, but not all, continentally IPCs. The complementarity-based reserve selection algorithms suggest conservation of a similar set of grid cells, suggesting that areas of high plant diversity and rarity may be well protected by a single pattern of conservation activity. Although climatic conditions are predicted to deteriorate for many species under predicted climate change, the cells selected by the algorithms are less affected by climate change predictions than non-selected cells. For the plant species that maintain areas of climatic suitability in the future, the selected set will include cells with climate that is highly suitable for the species in the future. The selected cells are also predicted to conserve a large proportion of the species richness remaining across the continent under climate change, despite the network of cells being less optimal in terms of future predicted distributions. Limitations to the modelling are discussed in relation to the policy implications for those implementing the GSPC. [source]


Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2003
Joe IannelliArticle first published online: 2 SEP 200
Abstract This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Biodiversity assessment: a case study in predicting richness from the potential distributions of plant species in the forests of south-western Australia

JOURNAL OF BIOGEOGRAPHY, Issue 5 2000
Paul Gioia
Abstract Distributions were predicted for 1430 native plant species as part of a biodiversity assessment in the forests of south-west Western Australia. From these predicted distributions, an index of plant species richness was generated for the forest area. The most common predictors for distribution were found to be climatic surfaces incorporating some aspect of seasonality in temperature and precipitation. Although coarse, the index confirmed existing knowledge of areas of high biodiversity within the study area and introduced a new area, the Blackwood Plateau, for consideration as a conservation reserve with high species richness. An additional survey was conducted to sample actual species richness in 11 test sites. When actual richness was regressed against predicted richness, a significant correlation was obtained if both annuals and geophytes were excluded from the analysis. With refinement of the model and further data collection targeted at areas of low effort, the species richness index is proposed as a useful tool for conservation planning. [source]