Predicted Amino Acid Sequence (predicted + amino_acid_sequence)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


MIDA1 is a sequence specific DNA binding protein with novel DNA binding properties

GENES TO CELLS, Issue 9 2000
Toshiaki Inoue
Background Id proteins not only regulate cell differentiation negatively, but they also promote growth and apoptosis. To know the mechanism of how Id regulates cell fate, we previously isolated an Id-associating protein, MIDA1, which positively regulates cell growth. Its predicted amino acid sequence contains tryptophan-mediated repeats (Tryp-med repeats) similar to the DNA binding region of the c-Myb oncoprotein. We determined whether MIDA1 can bind to DNA in a sequence specific manner by PCR-assisted binding site selection. Results We identified a 7-base sequence (GTCAAGC) surrounded by a 1,3 bp palindromic sequence as the DNA sequence recognized by the Tryp-med repeats of MIDA1. This motif is located within the 5,-flanking sequence of several growth regulating genes. Gel shift assays revealed that this sequence and a certain length of flanking DNA are necessary for MIDA1 to bind DNA in a stable manner. Methylation interference and DNase I footprint analysis suggested that the DNA binding of MIDA1 is resistant to DNA methylation and that MIDA1 does not specifically localize on this particular motif. Conclusions We concluded that MIDA1 is a novel sequence-specific DNA binding protein with some different properties from the usual transcription factors and that MIDA1 may act as a mediator of Id-mediated growth-promoting function through its DNA binding activity. [source]


cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the Indianmeal moth, Plodia interpunctella

INSECT MOLECULAR BIOLOGY, Issue 1 2000
Y. C. Zhu
Abstract Trypsin-like enzymes are major insect gut enzymes that digest dietary proteins and proteolytically activate insecticidal proteins produced by the bacterium Bacillus thuringiensis (Bt). Resistance to Bt in a strain of the Indianmeal moth, Plodia interpunctella, was linked to the absence of a major trypsin-like proteinase (Oppert et al., 1997). In this study, trypsin-like proteinases, cDNA sequences, mRNA expression levels and genomic DNAs from Bt-susceptible and -resistant strains of the Indianmeal moth were compared. Proteinase activity blots of gut extracts indicated that the susceptible strain had two major trypsin-like proteinases, whereas the resistant strain had only one. Several trypsinogen-like cDNA clones were isolated and sequenced from cDNA libraries of both strains using a probe deduced from a conserved sequence for a serine proteinase active site. cDNAs of 852 nucleotides from the susceptible strain and 848 nucleotides from the resistant strain contained an open reading frame of 783 nucleotides which encoded a 261-amino acid trypsinogen-like protein. There was a single silent nucleotide difference between the two cDNAs in the open reading frame and the predicted amino acid sequence from the cDNA clones was most similar to sequences of trypsin-like proteinases from the spruce budworm, Choristoneura fumiferana, and the tobacco hornworm, Manduca sexta. The encoded protein included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Northern blotting analysis showed no major difference between the two strains in mRNA expression in fourth-instar larvae, indicating that transcription was similar in the strains. Southern blotting analysis revealed that the restriction sites for the trypsinogen genes from the susceptible and resistant strains were different. Based on an enzyme size comparison, the cDNA isolated in this study corresponded to the gene for the smaller of two trypsin-like proteinases, which is found in both the Bt-susceptible and -resistant strains of the Indianmeal moth. The sequences reported in this paper have been deposited in the GenBank database (accession numbers AF064525 for the RC688 strain and AF064526 for HD198). [source]


Cattle MHC genes DOA and DOB: sequence polymorphisms and assignments to the class IIb region

INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 3 2001
A. Gelhaus
Summary In a study of the genetic polymorphism of the second exons of the cattle DOA and DOB genes, two and four allelic variants were detected, respectively. In the predicted amino acid sequence, the DOA polymorphism corresponded to variation at the respective residue position, whereas the nucleotide substitutions in the DOB gene were non-informative. PCR-RFLP assays were developed for DOA and DOB typing, and both loci were genetically mapped to the BoLA class IIb region by linkage analysis in the International Bovine Reference Panel. The single nucleotide polymorphisms detected in the BoLA-DOA and - DOB genes enable these loci to be used as markers in genetic trait analyses. [source]


Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive

PHYSIOLOGIA PLANTARUM, Issue 4 2002
Hao-Jen Huang
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, there is evidence for MAPKs playing a role in the signalling of abiotic stresses, pathogens, plant hormones, and cell cycle cues. The large number and divergence of plant MAPKs indicates that this ancient mechanism of signal transduction is extensively used in plants. However, there have been no reports of classical MAPK module in rice. In this report, we have isolated a MAPK from rice (Oryza sativa) termed OsMAPK2. The cloned cDNA is 1457 nucleotides long and the deduced amino acid sequence comprised 369 amino acid residues. Sequence analysis revealed that the predicted amino acid sequence is 72% identical to tobacco wound-induced protein kinase (WIPK). Southern analysis suggested a single OsMAPK2 gene in rice. Analysis at the mRNA level has shown that OsMAPK2 is expressed in all plant organs and high relative amounts of OsMAPK2 were detected in the mature panicles in comparison with in the immature panicles. In suspension-cultured cells, the OsMAPK2 mRNA transcript increased markedly upon temperature downshift from 26°C to 4°C and sucrose starvation. In contrast, the OsMAPK2 mRNA level rapidly declined in rice cell challenged by high temperature. A similarly rapid response of OsMAPK2 was observed in stress-treated seedlings, demonstrating that response of the MAPK pathway occurs also in intact plants. These results suggest that this OsMAPK2 may function in the stress-signalling pathway as well as panicle development in rice. [source]


Purification and characterization of ,-glucosidase in Apis cerana indica

INSECT SCIENCE, Issue 3 2008
Chanpen Chanchao
Abstract Apis cerana indica foragers were used for the isolation of a full-length ,-glucosidase cDNA, and for purification of the active nascent protein by low salt extraction of bee homogenates, ammonium sulphate precipitation and diethylaminoethyl-cellulose and Superdex 200 chromatographies. The molecular mass of the purified protein was estimated by polyacrylamide gel electrophoresis resolution, and the pH, temperature, incubation, and substrate optima for enzymic activity were determined. Conformation of the purified enzyme as ,-glucosidase was performed by BLAST software homology comparisons between matrix assisted laser desorption ionization time of flight mass spectroscopy analysed partial tryptic peptide digests of the purified protein with the predicted amino acid sequences deduced from the ,-glucosidase cDNA sequence. [source]


Production of monoclonal antibodies against synthetic peptides of the N-terminal region of Potato virus Y coat protein and their use in PVY strain differentiation

PLANT PATHOLOGY, Issue 4 2002
H. Ounouna
Antibodies were prepared against two synthetic peptides, P19 and P11, derived from the coat protein N-terminal region of two pepper isolates of Potato virus Y from Tunisia (PVY-P21 and PVY-P2, respectively). The peptides were selected by comparing the predicted amino acid sequences of three pepper and four potato PVY isolates on the basis of their polymorphism and hydrophilicity. Sera with high titres were only obtained against P19. Three MAbs, raised in response to P19, reacted with the homologous virus (PVY-P21) in TAS-ELISA. When tested against a broad range of PVY isolates and related viruses, MAb 3C5 proved to be PVY species specific, whereas MAbs 8A4 and 1D6 reacted specifically with standard isolates of PVYO, PVYC and PVYN -W strains, but not with other PVY isolates. Consequently, epitope(s) recognized by 8A4 and 1D6 MAbs may be specific to a PVY group comprising all serologically PVYnon,N isolates. Surprisingly, and unlike isolate PVY-P21, many Tunisian field pepper isolates did not carry this epitope(s), thus revealing serological heterogeneity within the PVY pepper group. As PVY is one of the most economically important plant pathogens in a range of crops, including pepper, these MAbs will provide a useful tool for practical diagnosis and strain identification of PVY. [source]