Home About us Contact | |||
Predicted Abundance (predicted + abundance)
Selected AbstractsA spatial model of bird abundance as adjusted for detection probabilityECOGRAPHY, Issue 2 2009P. Marcos Gorresen Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: ,i,iwi Vestiaria coccinea and ,apapane Himatione sanguinea. [source] Atlantic climatic factors control decadal dynamics of a Baltic Sea copepod Temora longicornisECOGRAPHY, Issue 5 2003Jari Hänninen We discovered, using transfer functions, that climatic changes in the Atlantic control the abundance of Temora longicornis, a dominant pelagic copepod of the Baltic Sea. The seawater salinity was increasing and copepod numbers were high from 1960s up to 1970s. Then the freshwater runoff started to increase, which resulted in decreasing salinities and abundance of the copepod. At the end of 1990s, runoffs remained at a high level, and the decrease of surface salinities and Temora leveled off. Due to time lags between variables studied, we also make predictions of changes expectable in early 2000s. The total freshwater runoff to the Baltic Sea followed the North Atlantic Oscillation with an immediate lag. Salinity followed the runoff non-linearly with a lag of 4,9 months. Temora longicornis followed the salinity with a lag of 1,3 months. Predicted abundance of T. longicornis will remain low implicating poor feeding conditions for planktivores. Our study points out the importance of physical factors in control of pelagic environments compared to ecological interactions, such as top-down and bottom-up. [source] Habitat selection by Ortolan Buntings Emberiza hortulana in post-fire succession in Catalonia: implications for the conservation of farmland populationsIBIS, Issue 4 2009MYLES H. M. MENZ The Ortolan Bunting Emberiza hortulana is a long-distance migrant that has suffered major population declines across much of its European breeding range. While northern populations are bound largely to farmland, Mediterranean populations are largely confined to habitats subject to recurrent wildfires. Habitat selection of the Ortolan Bunting was assessed in a recently burnt area in Catalonia at landscape and habitat scales. A Zero-inflated Poisson procedure was used to model the abundance of birds in relation to landscape and habitat variables. The most parsimonious landscape model predicted the highest abundance on south-facing slopes, with a gradient above 10°. The most parsimonious habitat model showed a positive quadratic effect of bare ground and regenerating oak Quercus spp., with predicted optima for abundance around 20,30% and 20% cover, respectively. There was a clear relationship between predicted abundance of the Ortolan Bunting and post-fire regenerating oak shrubs. South-facing, moderately sloping areas were favoured and bare ground was a key feature of the species' habitat. A matrix combining patches of sparse oak shrubs and patches of bare ground appears to be the optimal breeding habitat in the Mediterranean. The maintenance or provision of similar habitat features, especially patches of bare ground, may prove crucial for the conservation of rapidly declining Ortolan Bunting populations on farmland across temperate Europe. [source] Predicting global abundance of a threatened species from its occurrence: implications for conservation planningDIVERSITY AND DISTRIBUTIONS, Issue 1 2009Marcos S. L. Figueiredo Abstract Aim, Global abundance is an important characteristic of a species that is correlated with geographical distribution and body size. Despite its importance these estimates are not available since reliable field estimates are either expensive or difficult to obtain. Based on the relationship between a species' local abundance and distribution, some authors propose that abundance can be obtained through spatial distribution data from maps plotted at different scales. This has never been tested over the entire geographical range of a species. Thus, the aim of this study was to estimate global abundance of the Neotropical primate Brachyteles hypoxanthus (northern muriqui) and compare the results with available field estimates. Location, From southern Bahia to Minas Gerais and Espírito Santo states, in the Brazilian Atlantic rain forest. Methods, We compiled 25 recent occurrence localities of B. hypoxanthus and plotted them in grid cells of five different sizes (1, 25, 50, 75 and 100 km per side) to evaluate the performance and accuracy of abundance estimates over a wide range of scales. The abundance estimates were obtained by the negative binomial distribution (NBD) method and corrected by average group size to take into account primate social habits. To assess the accuracy of the method, the predicted abundances were then compared to recent independent field estimates. Results, The NBD estimates were quite accurate in predicting B. hypoxanthus global abundance, once the gregarious habits of this species are taken into account. The predicted abundance estimates were not statistically different from those obtained from field estimates. Main conclusions, The NBD method seems to be a quick and reliable approach to estimate species abundance once several limiting factors are taken into account, and can greatly impact conservation planning, but further applications in macroecological and ecological theory testing needs improvement of the method. [source] Resource competition and plant traits: a response to Craine et al.JOURNAL OF ECOLOGY, Issue 2 2007Summary 1Resource competition theory incorporates the mechanisms that underlie consumer,resource interactions and the trade-offs that constrain these mechanisms. Contrary to assertions by Craine, the concept of R* as the measure of resource reduction and the predictor of resource competition has not changed since it was proposed more than two decades ago. 2Resource reduction, as summarized in R*, is readily observed. Soil concentrations of nitrate and water are decreased by plant uptake, and are lowered to different levels by different species. Tests have shown R* theory to correctly predict competitive outcomes for a variety of organisms and ecosystems. 3Consumer-resource mechanisms are a building block for theories that incorporate other trade-offs faced by plants, such as those between competitive ability and dispersal. 4Numerous plant traits interactively determine R* in a manner predictable from trait-based resource competition theory. The same traits shown by comparative research to be associated with plant dominance in low-nutrient habitats give lower R* values, greater predicted competitive ability and greater predicted abundances in nutrient-limited habitats. 5Plant ecology needs closer links between analytical theory, observations and experiments. Simple verbal theories can generate novel ideas but the logical implications of such scenarios are best explored using the rigorous logic of mathematics. Predictions of theory can then be tested via experiments and comparative studies. [source] |