Home About us Contact | |||
Predatory Ants (predatory + ant)
Selected AbstractsConspicuous extra-floral nectaries are inducible in Vicia fabaECOLOGY LETTERS, Issue 6 2003Edward B. Mondor Abstract Mutualistic interactions are dynamic associations that vary depending on the costs and benefits to each of the interacting parties. Phenotypic plasticity in mutualistic interactions allows organisms to produce rewards to attract mutualists when the benefits of their presence outweigh the costs of producing the rewards. In ant,plant defensive mutualisms, defences are indirect as plants produce extra-floral nectaries (EFN) to attract predatory ants to deter herbivores. Here we demonstrate that in broad bean, Vicia faba, the overall number of EFNs on a plant increases dramatically following leaf damage. In two damage treatments, removal of: (1) one-third of one leaf in a single leaf pair or (2) one-third of both halves of a single leaf pair, resulted in a 59 and 106% increase in the number of EFNs on the plants, respectively, over 1 week. We suggest that the increased production of visually conspicuous EFNs is an adaptive inducible response, to attract predatory arthropods when risk of herbivory increases. [source] Effects of predatory ants on lower trophic levels across a gradient of coffee management complexityJOURNAL OF ANIMAL ECOLOGY, Issue 3 2008S. M. Philpott Summary 1Ants are important predators in agricultural systems, and have complex and often strong effects on lower trophic levels. Agricultural intensification reduces habitat complexity, food web diversity and structure, and affects predator communities. Theory predicts that strong top-down cascades are less likely to occur as habitat and food web complexity decrease. 2To examine relationships between habitat complexity and predator effects, we excluded ants from coffee plants in coffee agroecosystems varying in vegetation complexity. Specifically, we studied the effects of eliminating ants on arthropod assemblages, herbivory, damage by the coffee berry borer and coffee yields in four sites differing in management intensification. We also sampled ant assemblages in each management type to see whether changes in ant assemblages relate to any observed changes in top-down effects. 3Removing ants did not change total arthropod densities, herbivory, coffee berry borer damage or coffee yields. Ants did affect densities of some arthropod orders, but did not affect densities of different feeding groups. The effects of ants on lower trophic levels did not change with coffee management intensity. 4Diversity and activity of ants on experimental plants did not change with coffee intensification, but the ant species composition differed. 5Although variation in habitat complexity may affect trophic cascades, manipulating predatory ants across a range of coffee agroecosystems varying in management intensity did not result in differing effects on arthropod assemblages, herbivory, coffee berry borer attack or coffee yields. Thus, there is no clear pattern that top-down effects of ants in coffee agroecosystems intensify or dampen with decreased habitat complexity. [source] Twig-Nesting Ants: The Hidden Predators of the Coffee Berry Borer in Chiapas, MexicoBIOTROPICA, Issue 3 2010Ashley Larsen ABSTRACT Coffee is a globally important crop that is subject to numerous pest problems, many of which are partially controlled by predatory ants. Yet several studies have proposed that these ecosystem services may be reduced where agricultural systems are more intensively managed. Here we investigate the predatory ability of twig-nesting ants on the main pest of coffee, the coffee berry borer (Hypothenemus hampei) under different management systems in southwest Chiapas, Mexico. We conducted both laboratory and field experiments to examine which twig-nesting ant species, if any, can prey on free-living borers or can remove borers embedded in coffee fruits and whether the effects of the twig-nesting ant community differ with habitat type. Results indicate that several species of twig-nesting ants are effective predators of both free-living borers and those embedded in coffee fruits. In the lab, Pseudomyrmex ejectus, Pseudomyrmex simplex, and Pseudomyrmex PSW-53 effectively removed free-living and embedded borers. In the field, abundance, but not diversity, of twig-nesting ant colonies was influenced by shade management techniques, with the highest colony abundance present in the sites where shade trees were recently pruned. However, borer removal rates in the field were significant only in the shadiest site, but not in more intensively managed sites. This study provides evidence that twig-nesting ants can act as predators of the coffee berry borer and that the presence of twig-nesting ants may not be strongly linked to shade management intensity, as has been suggested for other arthropod predators of the borer. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source] |