Home About us Contact | |||
Predator Satiation (predator + satiation)
Selected AbstractsFragmentation, habitat composition and the dispersal/predation balance in interactions between the Mediterranean myrtle and avian frugivoresECOGRAPHY, Issue 1 2010Juan P. González-Varo Human-induced fragmentation and disturbance of natural habitats can shift abundance and composition of frugivore assemblages, which may alter patterns of frugivory and seed dispersal. However, despite their relevance to the functioning of ecosystems, plant-frugivore interactions in fragmented areas have been to date poorly studied. I investigated spatial variation of avian frugivore assemblages and fruit removal by dispersers and predators from Mediterranean myrtle shrubs (Myrtus communis) in relation to the degree of fragmentation and habitat features of nine woodland patches (72 plants). The study was conducted within the chronically fragmented landscape of the Guadalquivir Valley (SW Spain), characterized by ~1% of woodland cover. Results showed that the abundance and composition of the disperser guild was not affected by fragmentation, habitat features or geographical location. However, individual species and groups of resident/migrant birds responded differently: whereas resident dispersers were more abundant in large patches, wintering dispersers were more abundant in fruit-rich patches. Predator abundances were similar between patches, although the guild composition shifted with fragmentation. The proportion of myrtle fruits consumed by dispersers and predators varied greatly between patches, but did not depend on bird abundances. The geographical location of patches determined the presence or absence of interactions between myrtles and seed predators (six predated and three non-predated patches), a fact that greatly influenced fruit dispersal success. Moreover, predation rates were lower (and dispersal rates higher) in large patches with fruit-poor heterospecific environments (i.e. dominated by myrtle). Predator satiation and a higher preference for heterospecific fruits by dispersers may explain these patterns. These results show that 1) the frugivore assemblage in warm Mediterranean lowlands is mostly composed of fragmentation-tolerant species that respond differently to landscape changes; and 2) that the feeding behaviour of both dispersers and predators influenced by local fruit availability may be of great importance for interpreting patterns of frugivory throughout the study area. [source] The role of rainfall and predators in determining synchrony in reproduction of savanna trees in Serengeti National Park, TanzaniaJOURNAL OF ECOLOGY, Issue 1 2007SIMON A. R. MDUMA Summary 1We examined the factors determining synchrony in reproduction in nine Acacia and six other tree species in the Serengeti ecosystem. 2We test two hypotheses: (i) an abiotic hypothesis where the primary determinant of synchrony is an adaptation to water availability; and (ii) biotic hypotheses where these adaptations to water can be further refined by additional adaptations to avoid predators, or attract seed and fruit dispersers. 3Flowering and fruiting were recorded monthly for individually marked trees during 1997,2004. Flowering in different species occurs semi-annually, annually or, in the case of one species, once every 2 years. For most species synchrony of flowering was correlated with seasonal rainfall, with lags related to the mean height of the species; small species flowered during the rains while larger species flowered in the dry season. Fruiting seasons occurred at the end of the rains irrespective of the flowering season. 4Most species showed flowering synchrony greater than expected from the distribution of rainfall. This may be related to avoidance of insect seed predators through predator satiation. Two Acacias showed multi-annual fruiting (masting), possibly as a predator avoidance mechanism. Acacia tortilis has two flowering seasons: a dry season flowering with early abortion of pods and a wet season flowering producing successful fruits. 5Two species of Commiphora appeared to be synchronized so as to attract birds that disperse seeds. Acacia tortilis produced indehiscent pods attractive to ungulates, possibly to kill bruchid beetles during digestion and so increase seed viability. 6Our results suggest that synchrony in these trees is caused by a strong interaction between abiotic and biotic factors. Closely related species have different reproductive patterns of synchrony that seem to be adapted to different combinations of rainfall, predators and dispersers. Rainfall is the primary determinant but the activities of predators and dispersers increase the degree of synchrony. [source] Genetic variation in flowering phenology and avoidance of seed predation in native populations of Ulex europaeusJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2010A. ATLAN Abstract The genetic variation in flowering phenology may be an important component of a species' capacity to colonize new environments. In native populations of the invasive species Ulex europaeus, flowering phenology has been shown to be bimodal and related to seed predation. The aim of the present study was to determine if this bimodality has a genetic basis, and to investigate whether the polymorphism in flowering phenology is genetically linked to seed predation, pod production and growth patterns. We set up an experiment raising maternal families in a common garden. Based on mixed analyses of variance and correlations among maternal family means, we found genetic differences between the two main flowering types and confirmed that they reduced seed predation in two different ways: escape in time or predator satiation. We suggest that this polymorphism in strategy may facilitate maintain high genetic diversity for flowering phenology and related life-history traits in native populations of this species, hence providing high evolutionary potential for these traits in invaded areas. [source] Allochronic speciation, secondary contact, and reproductive character displacement in periodical cicadas (Hemiptera: Magicicada spp.): genetic, morphological, and behavioural evidenceMOLECULAR ECOLOGY, Issue 3 2001John R. Cooley Abstract Periodical cicadas have proven useful in testing a variety of ecological and evolutionary hypotheses because of their unusual life history, extraordinary abundance, and wide geographical range. Periodical cicadas provide the best examples of synchronous periodicity and predator satiation in the animal kingdom, and are excellent illustrations of habitat partitioning (by the three morphologically distinct species groups), incipient species (the year classes or broods), and cryptic species (a newly discovered 13-year species, Magicicada neotredecim). They are particularly useful for exploring questions regarding speciation via temporal isolation, or allochronic speciation. Recently, data were presented that provided strong support for an instance of allochronic speciation by life-cycle switching. This speciation event resulted in the formation of a new 13-year species from a 17-year species and led to secondary contact between two formerly separated lineages, one represented by the new 13-year cicadas (and their 17-year ancestors), and the other represented by the pre-existing 13-year cicadas. Allozyme frequency data, mitochondrial DNA (mtDNA), and abdominal colour were shown to be correlated genetic markers supporting the life-cycle switching/allochronic speciation hypothesis. In addition, a striking pattern of reproductive character displacement in male call pitch and female pitch preference between the two 13-year species was discovered. In this paper we report a strong association between calling song pitch and mtDNA haplotype for 101 individuals from a single locality within the M. tredecim/M. neotredecim contact zone and a strong association between abdomen colour and mtDNA haplotype. We conclude by reviewing proposed mechanisms for allochronic speciation and reproductive character displacement. [source] Masting and trophic cascades: interplay between rowan trees, apple fruit moth, and their parasitoid in southern NorwayOIKOS, Issue 3 2004Akiko Satake We analyzed berry production in rowan, Sorbus aucuparia L., in southern Norway and examined the ramifying effects of rowan masting on the dynamics of the dominant seed predator and its parasitoid. The apple fruit moth, Argyresthia conjugella Zeller, is a pre-dispersal seed predator of rowan. The larva of the apple fruit moth rely on rowan berries, which in turn is attacked by the parasitoid wasp, Microgaster politus Marsh. We found classic masting in rowan: berry production varied across years (the mean coefficient of variation=1.02) and was spatially synchronized at large scale (the averaged correlation coefficient=0.67). Berry production represented a two-year cycle in western but a three-year cycle in eastern Norway. The abundance of the moth and the parasitoid also varied across years and were spatially synchronized. The degree of spatial synchrony decreased and cyclicity became obscure with increasing trophic level. We attempted to assess two different components to the predator satiation, functional and numerical satiations, based on a simple population dynamics model. The observed pattern of seed predation testified that both of functional and numerical satiations were at work in this system. In a comparison at different locations, rowan trees with more variable berry production were more effective in reducing losses to the seed predator. The parasitoids also seemed to experience satiation through the fluctuation in their host abundance. These results show that rowan masting has an adaptive foundation, which impacts the dynamics of higher trophic levels. [source] Direct and indirect effects of masting on rodent populations and tree seed survivalOIKOS, Issue 3 2002Jaclyn L. Schnurr Many plant species are thought to benefit from mast seeding as a result of increased seed survival through predator satiation. However, in communities with many different masting species, lack of synchrony in seed production among species may decrease seed survival by maintaining seed predator populations through the intermast cycle. Similarly, masting by different plant species may have different effects on the seed predator community. We conducted a three-year study in a northeastern USA temperate deciduous forest to determine if production of large seed crops by several tree species was synchronous, and if they had similar effects on all small mammal species. We found that red oak mast crops resulted in increased densities of Peromyscus leucopus and P. maniculatus, but had no effect on Clethrionomys gapperi abundance. Conversely, C. gapperi populations, but not Peromyscus populations, appeared to increase in response to a large red maple seed crop. Differences in small mammal abundance resulted in changes in species-specific seed survival: in the year of abundant C. gapperi, experimentally placed red oak acorns had significantly higher survival than in the year of high Peromyscus abundance. Red oak acorn removal was positively correlated with Peromyscus abundance, while red maple seed removal was significantly higher with increased C. gapperi abundance. Thus, species-specific seed production had differential effects on subsequent small mammal abundance, which in turn affected seed survival. We suggest that at the level of the community, even short-term lack of synchrony in production of large seed crops can cause variation in postdispersal seed survival, through differential effects on the community of small mammal seed predators. [source] |