Predator Behaviour (predator + behaviour)

Distribution by Scientific Domains


Selected Abstracts


Predator behaviour and prey density: evaluating density-dependent intraspecific interactions on predator functional responses

JOURNAL OF ANIMAL ECOLOGY, Issue 1 2001
Nilsson P. Anders
Abstract 1In models of size-structured predator,prey systems, the effects are evaluated of gape-size limited predation on prey population growth and density when predators are non-interacting, cannibalistic, interfering, and cannibalistic and interfering. 2Predation from non-interacting predators markedly reduces prey density, compared with prey densities in the absence of predation. When density-dependent cannibalism between predators is introduced, predator density and therefore total functional response decrease, resulting in a decrease in predation pressure and higher prey densities. 3Size- and density-dependent interference between predators substantially decreases functional responses in the predators, and the prey population is thus allowed to grow more dense. Allowing for cannibalism between interfering predators also decreases predator density, but here the decreased number of predators does not have the releasing effect seen in solely cannibalistic predators. The interference between predators decreases with predator density, and per capita functional responses increase and compensate for the decrease in predator density. 4These theoretical results are compared with results from natural systems with pikeperch and northern pike. Both species are cannibalistic, and pike are also kleptoparasitic, mirroring the models. Results from introductions of the different piscivores into natural systems corroborate the outcome of the models, since introduction or increased densities of pikeperch have shown to have severe and long-lasting effects on prey, while pike have only initial, decreasing over time effects on prey stock. Thus, predator behaviour may seriously affect predator impact on prey, and size- and density-dependent interactions between predators may be a major key to the understanding of predator,prey dynamics and community composition in lakes. [source]


Predator behaviour and morphology mediates the impact of an invasive species: cane toads and death adders in Australia

ANIMAL CONSERVATION, Issue 1 2010
B. L. Phillips
Abstract The arrival of an invasive species can have severe impacts on native species. The extent of the impact, as well as the speed at which native species may mount an adaptive response, depend upon the correlation between impact and the individual phenotypes of the native species. Strong correlation between phenotype and impact within the native species raises the possibility of rapid adaptive response to the invader. Here, we examine the impact of a dangerous newly arrived prey species (the highly toxic cane toad Bufo marinus) on naïve predators (death adders Acanthophis praelongus) in northern Australia. During laboratory trials and field radiotracking, toads killed 48% of the adders we studied. Long-term monitoring of the population also suggests a massive decline (>89%) in recent years concurrent with the arrival of toads. Variation in snake physiology (resistance to toad toxin) had little bearing on snake survival in the field. Snake behaviour (tendency to attack toads) and morphology (body size and head size), however, were strong predictors of snake survival. Smaller snakes with relatively small heads, and snakes that were unwilling to attack toads in the laboratory, had much higher survival rates in the field. These results show that toads have a massive impact on death adder populations, but that snake phenotypes strongly mediate this impact. Thus natural selection is operating on these adder populations and an adaptive response is a possibility. If these adders can rapidly shift toad-relevant morphological and behavioural traits (either through plastic or evolved means), they will ultimately face a lowered impact from this toxic invader. [source]


Predator behaviour and prey density: evaluating density-dependent intraspecific interactions on predator functional responses

JOURNAL OF ANIMAL ECOLOGY, Issue 1 2001
Nilsson P. Anders
Abstract 1In models of size-structured predator,prey systems, the effects are evaluated of gape-size limited predation on prey population growth and density when predators are non-interacting, cannibalistic, interfering, and cannibalistic and interfering. 2Predation from non-interacting predators markedly reduces prey density, compared with prey densities in the absence of predation. When density-dependent cannibalism between predators is introduced, predator density and therefore total functional response decrease, resulting in a decrease in predation pressure and higher prey densities. 3Size- and density-dependent interference between predators substantially decreases functional responses in the predators, and the prey population is thus allowed to grow more dense. Allowing for cannibalism between interfering predators also decreases predator density, but here the decreased number of predators does not have the releasing effect seen in solely cannibalistic predators. The interference between predators decreases with predator density, and per capita functional responses increase and compensate for the decrease in predator density. 4These theoretical results are compared with results from natural systems with pikeperch and northern pike. Both species are cannibalistic, and pike are also kleptoparasitic, mirroring the models. Results from introductions of the different piscivores into natural systems corroborate the outcome of the models, since introduction or increased densities of pikeperch have shown to have severe and long-lasting effects on prey, while pike have only initial, decreasing over time effects on prey stock. Thus, predator behaviour may seriously affect predator impact on prey, and size- and density-dependent interactions between predators may be a major key to the understanding of predator,prey dynamics and community composition in lakes. [source]


Frequency-dependent predation and maintenance of prey polymorphism

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2006
S. MERILAITA
Abstract In positive frequency-dependent predation, predation risk of an individual prey correlates positively with the frequency of that prey type. In a number of small-scale experiments individual predators have shown frequency-dependent behaviour, often leading to the conclusion that a population of such predators could maintain prey polymorphism. Using simulations, I studied the dynamics of frequency-dependent predation and prey polymorphism. The model suggests that persistence of prey polymorphism decreases with increasing number of predators that show frequency-dependent behaviour, questioning conclusions about polymorphism based on experiments with few predators. In addition, prey population size, prey crypsis, difference in crypsis between prey morphs and the way the behaviour was adjusted affected the persistence of polymorphism. Under some circumstances prey population remained polymorphic for a shorter time under frequency-dependent than under frequency-independent predation. This suggests that although positive frequency-dependent predator behaviour may maintain prey polymorphism, it is not a sufficient condition for persistent prey polymorphism. [source]


Terrestrial carnivores and human food production: impact and management

MAMMAL REVIEW, Issue 2-3 2008
PHILIP J. BAKER
ABSTRACT 1The production of food for human consumption has led to an historical and global conflict with terrestrial carnivores, which in turn has resulted in the extinction or extirpation of many species, although some have benefited. At present, carnivores affect food production by: (i) killing human producers; killing and/or eating (ii) fish/shellfish; (iii) game/wildfowl; (iv) livestock; (v) damaging crops; (vi) transmitting diseases; and (vii) through trophic interactions with other species in agricultural landscapes. Conversely, carnivores can themselves be a source of dietary protein (bushmeat). 2Globally, the major areas of conflict are predation on livestock and the transmission of rabies. At a broad scale, livestock predation is a customary problem where predators are present and has been quantified for a broad range of carnivore species, although the veracity of these estimates is equivocal. Typically, but not always, losses are small relative to the numbers held, but can be a significant proportion of total livestock mortality. Losses experienced by producers are often highly variable, indicating that factors such as husbandry practices and predator behaviour may significantly affect the relative vulnerability of properties in the wider landscape. Within livestock herds, juvenile animals are particularly vulnerable. 3Proactive and reactive culling are widely practised as a means to limit predation on livestock and game. Historic changes in species' distributions and abundance illustrate that culling programmes can be very effective at reducing predator density, although such substantive impacts are generally considered undesirable for native predators. However, despite their prevalence, the effectiveness, efficiency and the benefit:cost ratio of culling programmes have been poorly studied. 4A wide range of non-lethal methods to limit predation has been studied. However, many of these have their practical limitations and are unlikely to be widely applicable. 5Lethal approaches are likely to dominate the management of terrestrial carnivores for the foreseeable future, but animal welfare considerations are increasingly likely to influence management strategies. The adoption of non-lethal approaches will depend upon proof of their effectiveness and the willingness of stakeholders to implement them, and, in some cases, appropriate licensing and legislation. 6Overall, it is apparent that we still understand relatively little about the importance of factors affecting predation on livestock and how to manage this conflict effectively. We consider the following avenues of research to be essential: (i) quantified assessments of the loss of viable livestock; (ii) landscape-level studies of contiguous properties to quantify losses associated with variables such as different husbandry practices; (iii) replicated experimental manipulations to identify the relative benefit of particular management practices, incorporating (iv) techniques to identify individual predators killing stock; and (v) economic analyses of different management approaches to quantify optimal production strategies. [source]