Preclinical Research (preclinical + research)

Distribution by Scientific Domains


Selected Abstracts


Genetic and Environmental Influences on Ethanol Consumption: Perspectives From Preclinical Research

ALCOHOLISM, Issue 6 2010
Ricardo M. Pautassi
Background:, Alcohol use disorders (abuse and dependence, AUD) are multifactorial phenomena, depending on the interplay of environmental and genetic variables. Method:, This review describes current developments in animal research that may help (a) develop gene therapies for the treatment of alcoholism, (b) understand the permissive role of stress on ethanol intake, and (c) elucidate why exposure to ethanol early in life is associated with a greater risk of AUD. Results:, The polymorphisms found in liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) affect the elimination of ethanol and the susceptibility to ethanol intake. A highly active ADH protects against alcoholism, an effect related to a presteady state burst in arterial acetaldehyde. Social stressors, such as repeated early maternal separation or social defeat, exert a permissive effect on ethanol intake, perhaps by altering the normal development of the hypothalamic-pituitary-adrenal axis. Ethanol exposure during gestation, infancy, or adolescence increases the likelihood of AUD later in life. Early perception of ethanol's positive and negative (anti-anxiety) reinforcing effects may play a role in this phenomenon. Conclusions:, The review underscores the advantages of using preclinical animal models of AUD and highlights points of intersection between the topics to help design a more integrated approach for the study of alcohol-related problems. [source]


Chronic neuropathic pain: mechanisms, drug targets and measurement

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 2 2007
Nanna B. Finnerup
Abstract Neuropathic pain is common in many diseases or injuries of the peripheral or central nervous system, and has a substantial impact on quality of life and mood. Lesions of the nervous system may lead to potentially irreversible changes and imbalance between excitatory and inhibitory systems. Preclinical research provides several promising targets for treatment such as sodium and calcium channels, glutamate receptors, monoamines and neurotrophic factors; however, treatment is often insufficient. A mechanism-based treatment approach is suggested to improve treatment. Valid and reliable tools to assess various symptoms and signs in neuropathic pain and knowledge of drug mechanisms are prerequisites for pursuing this approach. The present review summarizes mechanisms of neuropathic pain, targets of currently used drugs, and measures used in neuropathic pain trials. [source]


MDMA, methamphetamine and their combination: possible lessons for party drug users from recent preclinical research

DRUG AND ALCOHOL REVIEW, Issue 1 2007
KELLY J. CLEMENS
Abstract The substituted amphetamines 3,4-methylenedioxymethamphetamine (MDMA, ,Ecstasy') and methamphetamine (METH, ,ice', ,speed') are increasingly popular drugs amongst party-drug users. Studies with humans have investigated the acute and possible long-term adverse effects of these drugs, yet outcomes of such studies are often ambiguous due to a variety of confounding factors. Studies employing animal models have value in determining the acute and long-term effects of MDMA and METH on brain and behaviour. Self-administration studies show that intravenous METH is a particularly potent reinforcer in rats and other species. In contrast, MDMA appears to have powerful effects in enhancing social behaviour in laboratory animals. Brief exposure to MDMA or METH may produce long-term reductions in dopamine, serotonin and noradrenaline in the brain and alterations in the density of various receptor and transporter proteins. However it is still unclear, particularly in the case of MDMA, whether this reflects a ,neurotoxic' effect of the drug. Lasting alterations in social behaviour, anxiety, depressive symptoms and memory have been demonstrated in laboratory rats given MDMA or METH and this matches long-term changes reported in some human studies. Recent laboratory studies suggest that MDMA/METH combinations may produce greater adverse neurochemical and behavioural effects than either drug alone. This is of some concern given recent evidence that party drug users may be frequently exposed to this combination of drugs. [source]


Synergistic Combinations of Anticonvulsant Agents: What Is the Evidence from Animal Experiments?

EPILEPSIA, Issue 3 2007
Daniël M. Jonker
Summary:,Purpose: Combination therapy is often used in the treatment of seizures refractory to monotherapy. At the same time, the pharmacodynamic mechanisms that determine the combined efficacy of antiepileptic drugs (AEDs) are unknown, and this prevents a rational use of these drug combinations. We critically evaluate the existing evidence for pharmacodynamic synergism between AEDs from preclinical studies in animal models of epilepsy to identify useful combinations of mechanisms and to determine whether study outcome depends on the various research methods that are in use. Methods: Published articles were included if the studies were placebo-controlled, in vivo, or ex vivo animal studies investigating marketed or experimental AEDs. The animal models that were used in these studies, the primary molecular targets of the tested drugs, and the methods of interpretation were recorded. The potential association of these factors with the study outcome (synergism: yes or no) was assessed through logistic regression analysis. Results: In total, 107 studies were identified, in which 536 interaction experiments were conducted. In 54% of these experiments, the possibility of a pharmacokinetic interaction was not investigated. The majority of studies were conducted in the maximal electroshock model, and other established models were the pentylenetetrazole model, amygdala kindling, and the DBA/2 model. By far the most widely used method for interpretation of the results was evaluation of the effect of a threshold dose of one agent on the median effective dose (ED50) of another agent. Experiments relying on this method found synergism significantly more often compared with experiments relying on other methods (p < 0.001). Furthermore, experiments including antagonists of the AMPA receptor were more likely to find synergism in comparison with all other experiments (p < 0.001). Conclusions: Intensive preclinical research into the effects of AED combinations has not led to an understanding of the pharmacodynamic properties of AED combinations. Specifically, the majority of the preclinical studies are not adequately designed to distinguish between additive, synergistic, and antagonistic interactions. Quantitative pharmacokinetic,pharmacodynamic studies of selectively acting AEDs in a battery of animal models are necessary for the development of truly synergistic drug combinations. [source]


Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004
Suling Zhao
Abstract We have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3 -directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these transgenic mouse embryos. In culture, Pitx3,GFP is coexpressed in a proportion of ES-derived DA neurons. Furthermore, ES cell-derived Pitx3,GFP expressing DA neurons responded to neurotrophic factors and were sensitive to DA-specific neurotoxin N-4-methyl-1, 2, 3, 6-tetrahydropyridine. We anticipate that the Pitx3,GFP ES cells could be used as a powerful model system for functional identification of molecules governing mDA neuron differentiation and for preclinical research including pharmaceutical drug screening and transplantation. The Pitx3 knock-in mice, on the other hand, could be used for purifying primary neurons for molecular studies associated with the midbrain-specific DA phenotype at a level not previously feasible. These mice would also provide a useful tool to study DA fate determination from embryo- or adult-derived neural stem cells. [source]


Extrapolating in vitro metabolic interactions to isolated perfused liver: Predictions of metabolic interactions between R -bufuralol, bunitrolol, and debrisoquine

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2010
Sami Haddad
Abstract Drug,drug interactions (DDIs) are a great concern to the selection of new drug candidates. While in vitro screening assays for DDI are a routine procedure in preclinical research, their interpretation and relevance for the in vivo situation still represent a major challenge. The objective of the present study was to develop a novel mechanistic modeling approach to quantitatively predict DDI solely based upon in vitro data. The overall strategy consisted of developing a model of the liver with physiological details on three subcompartments: the sinusoidal space, the space of Disse, and the cellular matrix. The substrate and inhibitor concentrations available to the metabolizing enzyme were modeled with respect to time and were used to relate the in vitro inhibition constant (Ki) to the in vivo situation. The development of the liver model was supported by experimental studies in a stepwise fashion: (i) characterizing the interactions between the three selected drugs (R -bufuralol (BUF), bunitrolol (BUN), and debrisoquine (DBQ)) in microsomal incubations, (ii) modeling DDI based on binary mixtures model for all the possible pairs of interactions (BUF,BUN, BUF,DBQ, BUN,DBQ) describing a mutual competitive inhibition between the compounds, (iii) incorporating in the binary mixtures model the related constants determined in vitro for the inhibition, metabolism, transport, and partition coefficients of each compound, and (iv) validating the overall liver model for the prediction of the perfusate kinetics of each drug determined in isolated perfused rat liver (IPRL) for the single and paired compounds. Results from microsomal coincubations showed that competitive inhibition was the mechanism of interactions between all three compounds, as expected since those compounds are all substrates of rat CYP2D2. For each drug, the Ki values estimated were similar to their Km values for CYP2D2 indicative of a competition for the same substrate-binding site. Comparison of the performance between the novel liver physiologically based pharmacokinetic (PBPK) model and published empirical models in simulating the perfusate concentration,time profile was based on the area under the curve (AUC) and the shape of the curve of the perfusate time course. The present liver PBPK model was able to quantitatively predict the metabolic interactions determined during the perfusions of mixtures of BUF,DBQ and BUN,DBQ. However, a lower degree of accuracy was obtained for the mixtures of BUF,BUN, potentially due to some interindividual variability in the relative proportion of CYP2D1 and CYP2D2 isoenzymes, both involved in BUF metabolism. Overall, in this metabolic interaction prediction exercise, the PBPK model clearly showed to be the best predictor of perfusate kinetics compared to more empirical models. The present study demonstrated the potential of the mechanistic liver model to enable predictions of metabolic DDI under in vivo condition solely from in vitro information. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4406,4426, 2010 [source]


Green Tea Polyphenols and Cancer Chemoprevention: Multiple Mechanisms and Endpoints for Phase II Trials

NUTRITION REVIEWS, Issue 5 2004
M.P.H., Susan B. Moyers Ph.D.
Among the numerous polyphenols isolated from green tea, the catechin EGCG predominates and is the target of anticancer research. But studies suggest that EGCG and other catechins are poorly absorbed and undergo substantial biotransformation to species that include glucuronides, sulfates, and methylated compounds. Numerous studies relate the antioxidant properties of the catechins with anticancer effects, but recent research proposes other mechanisms of action, including those involving methyl transfers that are subject to allelic variability in the enzyme catechol O-methyl transferase. However, preclinical research is promising and EGCG appears to be ready for further study in phase II and III trials. [source]


Survey of Community Engagement in NIH-Funded Research

CLINICAL AND TRANSLATIONAL SCIENCE, Issue 1 2010
Nancy E. Hood M.P.H.
Abstract Community engagement is an innovative and required component for Clinical and Translational Science Awards (CTSAs) funded by the National Institutes of Health (NIH). However, the extent of community engagement in NIH-funded research has not been previously examined. This study assessed baseline prevalence of community engagement activities among NIH-funded studies at a large Midwestern university with a CTSA. An online survey was e-mailed to principal investigators of recent NIH-funded studies (N = 480). Investigators were asked to identify what types of community engagement activities had occurred for each study. Responses were received for 40.4% (194/480) of studies. Overall, 42.6% reported any community engagement activities. More collaborative types of engagement (e.g., community advisory board) were less common than activities requiring less engagement (e.g., sharing study results with community members). Studies with more collaborative community engagement were less likely to be described as basic or preclinical research compared to all other studies. Given NIH's inclusive call for community engagement in research, relatively few NIH-funded studies reported community engagement activities, although this study used a broad definition of community and a wide range of types of engagement. These findings may be used to inform the goals of CTSA community engagement programs. Clin Trans Sci 2010; Volume *: 1,4 [source]