Preclinical Rationale (preclinical + rationale)

Distribution by Scientific Domains


Selected Abstracts


The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphalan

BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2010
Eric Sanchez
Summary The anti-multiple myeloma (MM) efficacy of bortezomib has led to the development of other proteasome inhibitors (PI), including CEP-18770 which has shown anti-MM effects in preclinical studies. However, the efficacy of orally (PO) or intravenously (IV) administered CEP-18770 in multiple MM models and in combination with conventional anti-MM therapies has not been evaluated. Herein, we show that CEP-18770 combined with melphalan or bortezomib induces synergistic inhibition of MM cell viability in vitro. In MM xenograft models, the addition of CEP-18770 IV to melphalan completely prevented the growth of both melphalan-sensitive and melphalan-resistant tumours. The combination of CEP-18770 IV and bortezomib induced complete regression of bortezomib-sensitive tumours and markedly delayed progression of bortezomib-resistant tumours compared to treatment with either agent alone. Single agent CEP-18770 PO also showed marked anti-MM effects in these xenograft models. These studies provide strong preclinical rationale for further development of this novel PI in the treatment of MM as a monotherapy as well as combined with either melphalan or bortezomib. [source]


Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma

BRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2007
Iris Breitkreutz
Summary Osteolytic bone disease in multiple myeloma (MM) is associated with upregulation of osteoclast (OCL) activity and constitutive inhibition of osteoblast function. The extracellular signal-regulated kinase 1/2 (ERK1/2) pathway mediates OCL differentiation and maturation. We hypothesized that inhibition of ERK1/2 could prevent OCL differentiation and downregulate OCL function. It was found that AZD6244, a mitogen-activated or extracellular signal-regulated protein kinase (MEK) inhibitor, blocked OCL differentiation and formation in a dose-dependent manner, evidenced by decreased ,V,3-integrin expression and tartrate-resistant acid phosphatase positive (TRAP+) cells. Functional dentine disc cultures showed inhibition of OCL-induced bone resorption by AZD6244. Major MM growth and survival factors produced by OCLs including B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL), as well as macrophage inflammatory protein (MIP-1,), which mediates OCL differentiation and MM, were also significantly inhibited by AZD6244. In addition to ERK inhibition, NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1) and c-fos were both downregulated, suggesting that AZD6244 targets a later stage of OCL differentiation. These results indicate that AZD6244 inhibits OCL differentiation, formation and bone resorption, thereby abrogating paracrine MM cell survival in the bone marrow microenvironment. The present study therefore provides a preclinical rationale for the evaluation of AZD6244 as a potential new therapy for patients with MM. [source]


Didox, a ribonucleotide reductase inhibitor, induces apoptosis and inhibits DNA repair in multiple myeloma cells

BRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2006
N. Raje
Summary Ribonucleotide reductase (RR) is the enzyme that catalyses the rate-limiting step in DNA synthesis, the production of deoxynucleotides. RR activity is markedly elevated in tumour tissue and is crucial for cell division. It is therefore an excellent target for cancer chemotherapy. This study examined the anti-myeloma activity of Didox (3,4-Dihydroxybenzohydroxamic acid), a novel RR inhibitor (RRI). Our data showed that Didox induced caspase-dependent multiple myeloma (MM) cell apoptosis. Didox, unlike other RRIs that mainly target the pyrimidine metabolism pathway, targets both purine and pyrimidine metabolism pathways in MM, as demonstrated by transcriptional profiling using the Affymetrix U133A 2·0 gene chip. Specifically, a ,2-fold downregulation of genes in these anabolic pathways was shown as early as 12 h after exposure to Didox. Furthermore, apoptosis was accompanied by downregulation of bcl family proteins including bcl-2, bclxl, and XIAP. Importantly, RR M1 component transcript was also downregulated, associated with decreased protein expression. Genes involved in DNA repair mechanisms, specifically RAD 51 homologue, were also downregulated. As Didox acts on MM cells by inhibiting DNA synthesis and repair, combination studies with melphalan, an agent commonly used in MM, were performed. A strong in vitro synergism was shown, with combination indices of <0·7 as determined by the Chou,Talalay method. These studies therefore provide the preclinical rationale for evaluation of Didox, alone and in combination with DNA-damaging agents, to improve patient outcome in MM. [source]


Anticancer effects of ZD6474, a VEGF receptor tyrosine kinase inhibitor, in gefitinib ("Iressa")-sensitive and resistant xenograft models

CANCER SCIENCE, Issue 12 2004
Fumiko Taguchi
ZD6474 is a novel, orally available inhibitor of vascular endothelial growth factor (VEGF) receptor-2 (KDR) tyrosine kinase, with additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. ZD6474 has been shown to inhibit angiogenesis and tumor growth in a range of tumor models. Gefitinib ("Iressa") is an selective EGFR tyrosine kinase inhibitor (TKI) that blocks signal transduction pathways. We examined the antitumor activity of ZD6474 in the gefitinib-sensitive lung adenocarcinoma cell line, PC-9, and a gefitinib-resistant variant (PC-9/ZD). PC-9/ZD cells showed cross-resistance to ZD6474 in an in vitro dye formation assay. In addition, ZD6474 showed dose-dependent inhibition of EGFR phosphorylation in PC-9 cells, but inhibition was only partial in PC-9/ZD cells. ZD6474-mediated inhibition of tyrosine residue phosphorylation (Tyr992 and Tyr1045) on EGFR was greater in PC-9 cells than in PC-9/ZD cells. These findings suggest that the inhibition of EGFR phosphorylation by ZD6474 can contribute a significant, direct growth-inhibitory effect in tumor cell lines dependent on EGFR signaling for growth and/or survival. The effect of ZD6474 (12.5,50 mg/kg/day p.o. for 21 days) on the growth of PC-9 and PC-9/ZD tumor xenografts in athymic mice was also investigated. The greatest effect was seen in gefitinib-sensitive PC-9 tumors, where ZD6474 treatment (>12.5 mg/kg/day) resulted in tumor regression. Dose-dependent growth inhibition, but not tumor regression, was seen in ZD6474-treated PC-9/ZD tumors. These studies demonstrate that the additional EGFR TKI activity may contribute significantly to the anti-tumor efficacy of ZD6474, in particular in those tumors that are dependent on continued EGFR-signaling for proliferation or survival. In addition, these results provide a preclinical rationale for further investigation of ZD6474 as a potential treatment option for both EGFR-TKI-sensitive and EGFR-TKI-resistant tumors. [source]