Precentral Gyrus (precentral + gyrus)

Distribution by Scientific Domains


Selected Abstracts


Event-related fMRI of Myoclonic Jerks Arising from Dysplastic Cortex

EPILEPSIA, Issue 9 2006
John S. Archer
Summary:,Background: Malformations of cortical development can cause epileptiform activity and myoclonic jerks, yet EEG correlates of jerks can be difficult to obtain. Methods: We studied a woman who had frequent episodes of persistent right-foot jerking since childhood. Ictal and interictal EEG had shown no localizing epileptiform activity. Functional imaging experiments were performed with concurrent video monitoring to document the timing of foot jerks. These studies mapped brain regions controlling voluntary right- and left-foot movements, and spontaneous right-foot jerks. Results: High-resolution structural MR imaging revealed a dysplastic gyrus extending anteriorly off the left central sulcus. Event-related analysis of spontaneous jerks revealed prominent activation of the left precentral gyrus (right-foot motor area), bilateral medial frontal regions (supplementary motor area), and the dysplastic gyrus. Hemodynamic response modeling to foot jerks revealed the hemodynamic response peaked earlier in the dysplastic cortex and SMA regions than in the foot area. Discussion: Event-related fMRI in a patient with spontaneous and induced epileptic foot jerks revealed brain regions active during jerks. The results of this analysis allowed us to tailor subsequent intracerebral recordings. Analysis of the timing of the hemodynamic response showed certain brain regions with an earlier rise in BOLD signal, suggesting a possible initiating role, or different hemodynamic response functions. Hemodynamic response timing should be considered carefully when interpreting event-related studies of epileptiform activity. [source]


MRI Volumetric Analysis in Rasmussen Encephalitis: A Longitudinal Study

EPILEPSIA, Issue 2 2003
Masanori Takeoka
Summary: ,Purpose: Rasmussen encephalitis is a progressive inflammatory process with difficult-to-control focal or lateralized seizure activity, leading to hemispheric dysfunction and atrophy in advanced stages. Anatomic changes of atrophy may be subtle in earlier phases of the disease, and progressive changes on serial scans may be difficult to detect. We report a case of early-stage Rasmussen encephalitis with a relatively stable clinical course in whom we performed magnetic resonance imaging (MRI)-based volumetric analysis over an interval of 1 year, to assess for volumetric changes. Methods: Volumetric analysis was performed on two successive MRI scans obtained at age 5 and 6 years, by using the CARDVIEWS program (J Cogn Neurosci, 1996). The images were segmented into gray- and white-matter structures according to signal intensity of their borders semiautomatically, with manual corrections. The cerebral cortex was further subdivided into smaller parcellation units according to anatomic landmarks identifiable on MRI. Results: Stable left cerebral hemispheric atrophy and progressive atrophy in the left precentral gyrus, left inferior frontal gyrus, and left cerebellar atrophy were detected over the 1-year interval. Conclusions: Volumetric analysis enables early detection and quantification of anatomic changes, identification of focal involvement, and assists in determining the severity of disease and timing for surgical interventions such as hemispherectomy. [source]


Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study

HUMAN BRAIN MAPPING, Issue 8 2010
Eini Niskanen
Abstract Navigated transcranial magnetic stimulation (TMS) can be used to stimulate functional cortical areas at precise anatomical location to induce measurable responses. The stimulation has commonly been focused on anatomically predefined motor areas: TMS of that area elicits a measurable muscle response, the motor evoked potential. In clinical pathologies, however, the well-known homunculus somatotopy theory may not be straightforward, and the representation area of the muscle is not fixed. Traditionally, the anatomical locations of TMS stimulations have not been reported at the group level in standard space. This study describes a methodology for group-level analysis by investigating the normal representation areas of thenar and anterior tibial muscle in the primary motor cortex. The optimal representation area for these muscles was mapped in 59 healthy right-handed subjects using navigated TMS. The coordinates of the optimal stimulation sites were then normalized into standard space to determine the representation areas of these muscles at the group-level in healthy subjects. Furthermore, 95% confidence interval ellipsoids were fitted into the optimal stimulation site clusters to define the variation between subjects in optimal stimulation sites. The variation was found to be highest in the anteroposterior direction along the superior margin of the precentral gyrus. These results provide important normative information for clinical studies assessing changes in the functional cortical areas because of plasticity of the brain. Furthermore, it is proposed that the presented methodology to study TMS locations at the group level on standard space will be a suitable tool for research purposes in population studies. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach

HUMAN BRAIN MAPPING, Issue 3 2006
Douglas Cheyne
Abstract We describe a novel spatial filtering approach to the localization of cortical activity accompanying voluntary movements. The synthetic aperture magnetometry (SAM) minimum-variance beamformer algorithm was used to compute spatial filters three-dimensionally over the entire brain from single trial neuromagnetic recordings of subjects performing self-paced index finger movements. Images of instantaneous source power ("event-related SAM") computed at selected latencies revealed activation of multiple cortical motor areas prior to and following left and right index finger movements in individual subjects, even in the presence of low-frequency noise (e.g., eye movements). A slow premovement motor field (MF) reaching maximal amplitude ,50 ms prior to movement onset was localized to the hand area of contralateral precentral gyrus, followed by activity in the contralateral postcentral gyrus at 40 ms, corresponding to the first movement-evoked field (MEFI). A novel finding was a second activation of the precentral gyrus at a latency of ,150 ms, corresponding to the second movement-evoked field (MEFII). Group averaging of spatially normalized images indicated additional premovement activity in the ipsilateral precentral gyrus and the left inferior parietal cortex for both left and right finger movements. Weaker activations were also observed in bilateral premotor areas and the supplementary motor area. These results show that event-related beamforming provides a robust method for studying complex patterns of time-locked cortical activity accompanying voluntary movements, and offers a new approach for the localization of multiple cortical sources derived from neuromagnetic recordings in single subject and group data. Hum. Brain Mapping 2005. © 2005 Wiley-Liss, Inc. [source]


Regional cerebral blood flow responses to hyperventilation during sevoflurane anaesthesia studied with PET

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 5 2010
L. SCHLÜNZEN
Background: Arterial carbon dioxide tension (PaCO2) is an important factor controlling cerebral blood flow (CBF) in neurosurgical patients. It is still unclear whether the hypocapnia-induced decrease in CBF is a general effect on the brain or rather linked to specific brain regions. We evaluated the effects of hyperventilation on regional cerebral blood flow (rCBF) in healthy volunteers during sevoflurane anaesthesia measured with positron emission tomography (PET). Methods: Eight human volunteers were anaesthetized with sevoflurane 1 MAC, while exposed to hyperventilation. During 1 MAC sevoflurane at normocapnia and 1 MAC sevoflurane at hypocapnia, one H215O scan was performed. Statistical parametric maps and conventional regions of interest analysis were used for estimating rCBF differences. Results: Cardiovascular parameters were maintained constant over time. During hyperventilation, the mean PaCO2 was decreased from 5.5 ± 0.7 to 3.8 ± 0.9 kPa. Total CBF decreased during the hypocapnic state by 44%. PET revealed wide variations in CBF between regions. The greatest values of vascular responses during hypocapnia were observed in the thalamus, medial occipitotemporal gyrus, cerebellum, precuneus, putamen and insula regions. The lowest values were observed in the superior parietal lobe, middle and inferior frontal gyrus, middle and inferior temporal gyrus and precentral gyrus. No increases in rCBF were observed. Conclusions: This study reports highly localized and specific changes in rCBF during hyperventilation in sevoflurane anaesthesia, with the most pronounced decreases in the sub cortical grey matter. Such regional heterogeneity of the cerebral vascular response should be considered in the assessment of cerebral perfusion reserve during hypocapnia. [source]


Blood Oxygen Level Dependent Response and Spatial Working Memory in Adolescents With Alcohol Use Disorders

ALCOHOLISM, Issue 10 2004
Susan F. Tapert
Background: Previous studies have suggested neural disruption and reorganization in young and older adults with alcohol use disorders (AUD). However, it remains unclear at what age and when in the progression of AUD changes in brain functioning might occur. Methods: Alcohol use disordered (n= 15) and nonabusing (n= 19) boys and girls aged 15 to 17 were recruited from local high schools. Functional magnetic resonance imaging data were collected after a minimum of 5 days' abstinence as participants performed spatial working memory and simple motor tasks. Results: Adolescents with AUD showed greater brain response to the spatial working memory task in bilateral parietal cortices and diminished response in other regions, including the left precentral gyrus and bilateral cerebellar areas (clusters ,943 ,l; p < 0.05), although groups did not differ on behavioral measures of task performance. No brain response differences were observed during a simple finger-tapping task. The degree of abnormality was greater for teens who reported experiencing more withdrawal or hangover symptoms and who consumed more alcohol. Conclusions: Adolescents with AUD show abnormalities in brain response to a spatial working memory task, despite adequate performance, suggesting that subtle neuronal reorganization may occur early in the course of AUD. [source]


Leptomeningeal carcinomatosis from urinary bladder adenocarcinoma: A clinicopathological case study

NEUROPATHOLOGY, Issue 1 2005
Kaoru Sugimori
We report a 73-year-old male patient with leptomeningeal metastasis from urinary bladder adenocarcinoma. He was presented, with, prominent, hyperactive, delirium, during the course of the disease. Meningeal carcinomatosis was detected 5 days before his death, but the primary site of the malignant tumor could not be determined. Necropsy revealed leptomeningeal infiltration of many adenocarcinoma cells that covered the cerebrum. The leptomeninges of the right middle frontal gyrus, superior temporal gyrus, precentral gyrus and inferior parietal lobe were most severely affected by tumor cell infiltration. Cerebral edema was found to extensively cover the basal part of the temporal lobe. In the cerebrum, tumor cells were clustered in the perivascular spaces and had invaded localized areas of the frontal lobe. Vascular cell adhesion molecule (VCAM)-1 expression was detected in the small vessels of the cerebral upper cortical layers and of temporal subcortical u-fibers. Numerous astrocytes positive for cytokeratin AE1/AE3 were found in the frontal and temporal lobes. Meningeal carcinomatosis from urinary bladder adenocarcinoma is extremely rare and up-regulation of the adhesion molecules in the meningeal adenocarcinoma was confirmed. [source]