Postsynaptic Profiles (postsynaptic + profile)

Distribution by Scientific Domains


Selected Abstracts


Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis

DEVELOPMENTAL NEUROBIOLOGY, Issue 6 2010
Sara Mae Stieb
Abstract Desert ants of the genus Cataglyphis undergo an age-related polyethism from interior workers involved in brood care and food processing to short-lived outdoor foragers with remarkable visual navigation capabilities. The quick transition from dark to light suggests that visual centers in the ant's brain express a high degree of plasticity. To investigate structural synaptic plasticity in the mushroom bodies (MBs),sensory integration centers supposed to be involved in learning and memory,we immunolabeled and quantified pre- and postsynaptic profiles of synaptic complexes (microglomeruli, MG) in the visual (collar) and olfactory (lip) input regions of the MB calyx. The results show that a volume increase of the MB calyx during behavioral transition is associated with a decrease in MG numbers in the collar and, less pronounced, in the lip. Analysis of tubulin-positive profiles indicates that presynaptic pruning of projection neurons and dendritic expansion in intrinsic Kenyon cells are involved. Light-exposure of dark-reared ants of different age classes revealed similar effects. The results indicate that this structural synaptic plasticity in the MB calyx is primarily driven by visual experience rather than by an internal program. This is supported by the fact that dark-reared ants age-matched to foragers had MG numbers comparable to those of interior workers. Ants aged artificially for up to 1 year expressed a similar plasticity. These results suggest that the high degree of neuronal plasticity in visual input regions of the MB calyx may be an important factor related to behavior transitions associated with division of labor. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 408,423, 2010 [source]


Localization of the A kinase anchoring protein AKAP79 in the human hippocampus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000
Attila Sík
Abstract The phosphorylation state of the proteins, regulated by phosphatases and kinases, plays an important role in signal transduction and long-term changes in neuronal excitability. In neurons, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and calcineurin (CN) are attached to a scaffold protein, A kinase anchoring protein (AKAP), thought to anchor these three enzymes to specific sites of action. However, the localization of AKAP, and the predicted sites of linked phosphatase and kinase activities, are still unknown at the fine structural level. In the present study, we investigated the distribution of AKAP79 in the hippocampus from postmortem human brains and lobectomy samples from patients with intractable epilepsy, using preembedding immunoperoxidase and immunogold histochemical methods. AKAP79 was found in the CA1, presubicular and subicular regions, mostly in pyramidal cell dendrites, whereas pyramidal cells in the CA3, CA2 regions and dentate granule cells were negative both in postmortem and in surgical samples. In some epileptic cases, the dentate molecular layer and hilar interneurons also became immunoreactive. At the subcellular level, AKAP79 immunoreactivity was present in postsynaptic profiles near, but not attached to, the postsynaptic density of asymmetrical (presumed excitatory) synapses. We conclude that the spatial selectivity for the action of certain kinases and phosphatases regulating various ligand- and voltage-gated channels may be ensured by the selective presence of their anchoring protein, AKAP79, at the majority of glutamatergic synapses in the CA1, but not in the CA2/CA3 regions, suggesting profound differences in signal transduction and long-term synaptic plasticity between these regions of the human hippocampus. [source]


Visual deprivation increases accumulation of dense core vesicles in developing optic tectal synapses in Xenopus laevis

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 12 2010
Jianli Li
Abstract Despite considerable progress in understanding the molecular components of synapses in the central nervous system, the ultrastructural rearrangements underlying synaptic development remain unclear. We used serial section transmission electron microscopy and three-dimensional reconstructions of the optic tectal neuropil of Xenopus laevis tadpoles to detect and quantify changes in synaptic ultrastructure over a 1-week period from stages 39 and 47, during which time the visual system of Xenopus tadpoles becomes functional. Synapse density, presynaptic maturation index, and number of synapses per axon bouton increase, whereas the number of DCVs per bouton decreases, between stages 39 and 47. The width of the synaptic cleft decreased and the diameter of postsynaptic profiles increased between stages 39 and 47 and then remained relatively unchanged after stage 47. We found no significant difference in synapse maturation between GABAergic and non-GABAergic synapses. To test the effect of visual experience on synaptogenesis, animals were deprived of visual experience for 3 days from stage 42 to 47. Visual deprivation decreased synapse maturation and the number of connections per bouton. Furthermore, visual deprivation increased the number of DCVs per bouton by more than twofold. The visual-deprivation-induced decrease in synaptic connections is specific to asymmetric non-GABAergic synapses; however, both symmetric GABAergic and asymmetric synapses show comparable increases in the number DCVs with visual deprivation. In both the control and the visually deprived animals, the number of DCVs per bouton is highly variable and does not correlate with either synapse maturation or the number of connected partners per bouton. These data suggest that synaptogenesis and DCV accumulation are regulated by visual experience and further suggest a complex spatial and temporal relation between DCV accumulation and synapse formation. J. Comp. Neurol. 518:2365,2381, 2010. © 2010 Wiley-Liss, Inc. [source]


Synaptic connections of cholinergic antennal lobe relay neurons innervating the lateral horn neuropile in the brain of Drosophila melanogaster

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2003
Kouji Yasuyama
Abstract Presumed cholinergic projection neurons (PNs) in the brain of the fruit fly Drosophila melanogaster, immunoreactive to choline acetyltransferase (ChAT), convey olfactory information between the primary sensory antennal lobe neuropile and the mushroom body calyces, and finally terminate in the lateral horn (LH) neuropile. The texture and synaptic connections of ChAT PNs in the LH and, comparatively, in the smaller mushroom body calyces were investigated by immuno light and electron microscopy. The ChAT PN fibers of the massive inner antennocerebral tract (iACT) extend into all portions of the LH, distributing in a nonrandom fashion. Immunoreactive boutons accumulate in the lateral margins of the LH, whereas the more proximal LH exhibits less intense immunolabeling. Boutons with divergent presynaptic sites, unlabeled as well as ChAT-immunoreactive, appear to be the preponderant mode of synaptic input throughout the LH. Synapses of ChAT-labeled fibers appear predominantly as divergent synaptic boutons (diameters 1,3 ,m), connected to unlabeled postsynaptic profiles, or alternatively as a minority of tiny postsynaptic spines (diameters 0.05,0.5 ,m) among unlabeled profiles. Together these spines encircle unidentified presynaptic boutons of interneurons which occupy large areas of the LH. Thus, synaptic circuits in the LH differ profoundly from those of the PNs in the mushroom body calyx, where ChAT spines have not been encountered. Synaptic contacts between LH ChAT elements were not observed. The synaptic LH neuropile may serve as an output area for terminals of the ChAT PNs, their presynaptic boutons providing input to noncholinergic relay neurons. The significance of the postsynaptic neurites of the ChAT PNs is discussed; either local or other interneurons might connect the ChAT PNs within the LH, or PNs might receive inputs arising from outside the LH. J. Comp. Neurol. 466:299,315, 2003. © 2003 Wiley-Liss, Inc. [source]