Post-starburst Galaxies (post-starburst + galaxy)

Distribution by Scientific Domains


Selected Abstracts


Post-starburst galaxies and the transformation of blue into red galaxies

ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009
S. De Rijcke
Abstract We present deep single-dish radio observations of a sample of nearby post-starburst galaxies (0.05 < z < 0.1). About 50% of these post-starburst galaxies are detected at 21 cm, with HI masses of ,109 M,, up to ,1010 M,. These post-starburst galaxies are as gas-rich as spiral galaxies with comparable luminosities. There appears to exist no direct correlation between the amount of H I present in a post-starburst galaxy and its star formation rate as traced by radio continuum emission. Moreover, the end of the starburst clearly does not necessarily require the complete exhaustion of the neutral gas reservoir. High-resolution radio observations of one post-starburst binary system suggest that most of the neutral gas resides outside the stellar bodies of the galaxies. Most likely, the gas was expelled by supernova and/or AGN feedback. This effectively stops star formation, even though copious amounts of diffuse neutral gas remain in the immediate vicinity. This remaining H I reservoir may eventually lead to further episodes of star formation. This may indicate that some post-starbursts are observed in the inactive phase ofthe star formation duty cycle (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The SAURON project , VI.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2006
Line strength maps of 48 elliptical, lenticular galaxies
ABSTRACT We present absorption line strength maps of 48 representative elliptical and lenticular galaxies obtained as part of a survey of nearby galaxies using our custom-built integral-field spectrograph, SAURON, operating on the William Herschel Telescope. Using high-quality spectra, spatially binned to a constant signal-to-noise ratio, we measure four key age, metallicity and abundance ratio sensitive indices from the Lick/IDS system over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and offsets is given, along with a description of error estimation and nebular emission correction. We modify the classical Fe5270 index to define a new index, Fe5270S, which maximizes the useable spatial coverage of SAURON. Maps of H,, Fe5015, Mg b and Fe5270S are presented for each galaxy. We use the maps to compute average line strengths integrated over circular apertures of one-eighth effective radius, and compare the resulting relations of index versus velocity dispersion with previous long-slit work. The metal line strength maps show generally negative gradients with increasing radius roughly consistent with the morphology of the light profiles. Remarkable deviations from this general trend exist, particularly the Mg b isoindex contours appear to be flatter than the isophotes of the surface brightness for about 40 per cent of our galaxies without significant dust features. Generally, these galaxies exhibit significant rotation. We infer from this that the fast-rotating component features a higher metallicity and/or an increased Mg/Fe ratio as compared to the galaxy as a whole. The H, maps are typically flat or show a mild positive outwards radial gradient, while a few galaxies show strong central peaks and/or elevated overall H, strength likely connected to recent star formation activity. For the most prominent post-starburst galaxies, even the metal line strength maps show a reversed gradient. [source]


Post-starburst galaxies and the transformation of blue into red galaxies

ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009
S. De Rijcke
Abstract We present deep single-dish radio observations of a sample of nearby post-starburst galaxies (0.05 < z < 0.1). About 50% of these post-starburst galaxies are detected at 21 cm, with HI masses of ,109 M,, up to ,1010 M,. These post-starburst galaxies are as gas-rich as spiral galaxies with comparable luminosities. There appears to exist no direct correlation between the amount of H I present in a post-starburst galaxy and its star formation rate as traced by radio continuum emission. Moreover, the end of the starburst clearly does not necessarily require the complete exhaustion of the neutral gas reservoir. High-resolution radio observations of one post-starburst binary system suggest that most of the neutral gas resides outside the stellar bodies of the galaxies. Most likely, the gas was expelled by supernova and/or AGN feedback. This effectively stops star formation, even though copious amounts of diffuse neutral gas remain in the immediate vicinity. This remaining H I reservoir may eventually lead to further episodes of star formation. This may indicate that some post-starbursts are observed in the inactive phase ofthe star formation duty cycle (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]