Home About us Contact | |||
Possible Reaction Pathways (possible + reaction_pathway)
Selected AbstractsTheoretical Studies on Proton Transfer Reactions of 8-Hydroxyquinoline Monomers and DimersCHINESE JOURNAL OF CHEMISTRY, Issue 6 2006Ji-Yang Zhao Abstract Density functional theory (DFT) of quantum chemistry method was employed to investigate proton transfer reactions of 8-hydroxyquinoline (8-HQ) monomers and dimers. By studying the potential energy curves of the isomerization, the most possible reaction pathway was found. The total energy of 8-hydroxyquinoline was lower than that of quinolin-8(1H)-one, whereas the order was reversed in dimers. The findings explained the contrary experimental phenomena. The minimum reaction barrier of intramolecular proton transfer was 47.3 kJ/mol while that in dimer was only 25.7 kJ/mol. Hence it is obvious that proton transfer reactions of 8-HQ monomer have a considerable rate but it is easier to proceed for 8-HQ dimer than monomers. It implied that the hydrogen bond played an important role in depressing the activation energy of reaction. The mechanism of the tautomerization was discussed on the basis of theoretical results. [source] Theoretical investigation of ion pair SN2 reactions of alkali isothiocyanates with alkyl halides.INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 1 2005Part 1. Abstract The gas-phase ionic SN2 reactions NCS - + CH3F and ion pair SN2 reaction LiNCS + CH3F with inversion mechanism were investigated at the level of MP2(full)/6-311+G**//HF/6-311+G**. Both of them involve the reactants complex, inversion transition state, and products complex. There are two possible reaction pathways in the ionic SN2 reaction but four reaction pathways in the ion pair SN2 reaction. Our results indicate that the introduction of lithium significantly lower the reaction barrier and make the ion pair displacement reaction more facile. For both ionic and ion pair reaction, methyl thiocyanate is predicted to be the major product, but the latter is more selective. More-stable methyl isothiocyanate can be prepared by thermal rearrangement of methyl thiocyanate. The theoretical predictions are consistent with the known experimental results. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source] Selective Hydrogenation of 5-Ethoxymethylfurfural over Alumina-Supported Heterogeneous CatalystsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 18 2009Erik-Jan Ras Abstract We report here the synthesis and testing of a set of 48 alumina-supported catalysts for hydrogenation of 5-ethoxymethylfurfural. This catalytic reaction is very important in the context of converting biomass to biofuels. The catalysts are composed of one main metal (gold, copper, iridium, nickel, palladium, platinum, rhodium, ruthenium) and one promoter metal (bismuth, chromium, iron, sodium, tin, tungsten). Using a 16-parallel trickle-flow reactor, we tested all 48 catalyst combinations under a variety of conditions. The results show that both substrate conversion and product selectivity are sensitive towards temperature changes and solvent effects. The best results of >99% yield to the desired product, 5-ethoxymethylfurfuryl alcohol, are obtained using an iridium/chromium (Ir/Cr) catalyst. The mechanistic implications of different possible reaction pathways in this complex hydrogenation system are discussed. [source] Palladium(II)-Catalyzed Domino Reaction of 2-(1-Alkynyl)-2-alken-1-ones with Nucleophiles: Scope, Mechanism and Synthetic Application in the Synthesis of 3,4-Fused Bicyclic Tetrasubstituted FuransADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4 2009Yuanjing Xiao Abstract Described herein is the development of a palladium(II)-catalyzed two- or three-component reaction of 2-(1-alkynyl)-2-alken-1-ones with nucleophiles and allylic chlorides. Various types of nucleophiles such as O- , N- , C -based nucleophiles and olefin-tethered O- , N- , C -based nucleophiles were investigated. The scope, mechanism and application of this Pd(II)-catalyzed domino reaction were studied. In these transformations, the palladium catalyst exhibits a dual role, serving simultaneously as a Lewis acid and a transition metal. Two possible reaction pathways (cross-coupling reaction vs. Heck reaction) from the same intermediate furanylpalladium species were observed. The reaction pathway is dependent on the property of the nucleophile and the length of the tethered chain as well. When olefin-tethered O -based nucleophiles were used, only the cross-coupling reaction pathway was observed, in contrast, both reaction pathways were observed when olefin-tethered C -based nucleophiles were employed. The product ratio is dependent on the length of the tethered chain. Furthermore, ring-closing metathesis (RCM) of corresponding furans with CC bonds provides an easy method for the preparation of functionalized oxygen-heterocycles , 3,4-fused bicyclic furans. It is also noteworthy that allylic chloride can be as an oxidant besides its well known function as an alkylating reagent. [source] Formation pathways of DMSO from DMS-OH in the presence of O2 and NOx: A theoretical studyJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2009Juan M. Ramírez-Anguita Abstract The relative importance of the reaction pathways and thus the product yields in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been said to be influenced by the content of nitrogen oxides (NOx) in chamber experiments. In this study, ab initio and density functional electronic structure calculations of all the possible reaction pathways corresponding to the reaction process initiated by DMS-OH + oxygen (O2), leading to the formation of the dimethyl sulfoxide (DMSO) product in the presence of NOx (NO and NO2), are carried out for the first time. The results for the different pathways are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO formation yields. Our theoretical results clearly show the existence of NOx -dependent pathways leading to the formation of DMSO in addition to O2 -dependent channels. So then, NOx -containing conditions would have to modify the relative importance of the addition channel in the DMS oxidation process. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source] Self-quenching in the electrochemiluminescence of Ru(bpy)32+ using ascorbic acid as co-reactantLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 3 2008Fumiki Takahashi Abstract In this study, electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2,-bipyridyl) using ascorbic acid (H2A) as co-reactant was investigated in an aqueous solution. When H2A was co-existent in a Ru(bpy)32+ -containing buffer solution, ECL peaks were observed at a potential corresponding to the oxidation of Ru(bpy)32+, and the intensity was proportional to H2A concentration at lower concentration levels. The formation of the excited state *Ru(bpy)32+ was confirmed to result from the co-reaction between Ru(bpy)33+and the intermediate of ascorbate anion radical (A,,), which showed the maximum ECL at pH = 8.8. It is our first finding that the ECL intensity would be quenched significantly when the concentration of H2A was relatively higher, or upon ultrasonic irradiation. In most instances, quenching is observed with four-fold excess of H2A over Ru(bpy)32+. The diffusional self-quenching scheme as well as the possible reaction pathways involved in the Ru(bpy)32+,H2A ECL system are discussed in this study. Copyright © 2008 John Wiley & Sons, Ltd. [source] Comprehensive Analysis of DNA Strand Breaks at the Guanosine Site Induced by Low-Energy Electron AttachmentCHEMPHYSCHEM, Issue 1 2010Jiande Gu Prof. Dr. Abstract To elucidate the role of guanosine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced CO ,-bonds and N-glycosidic bond breaking of 2,-deoxyguanosine-3,,5,-diphosphate (3,,5,-dGMP) were performed using the B3LYP/DZP++ approach. The results reveal possible reaction pathways in the gas phase and in aqueous solutions. In the gas phase LEEs could attach to the phosphate group adjacent to the guanosine to form a radical anion. However, the small vertical detachment energy (VDE) of the radical anion of guanosine 3,,5,-diphosphate in the gas phase excludes either CO bond cleavage or N-glycosidic bond breaking. In the presence of the polarizable surroundings, the solvent effects dramatically increase the electron affinities of the 3,,5,-dGDP and the VDE of 3,,5,-dGDP,. Furthermore, the solvent,solute interactions greatly reduce the activation barriers of the CO bond cleavage to 1.06,3.56 kcal,mol,1. These low-energy barriers ensure that either C5,O5, or C3,O3, bond rupture takes place at the guanosine site in DNA single strands. On the other hand, the comparatively high energy barrier of the N-glycosidic bond rupture implies that this reaction pathway is inferior to CO bond cleavage. Qualitative agreement was found between the theoretical sequence of the bond breaking reaction pathways in the PCM model and the ratio for the corresponding bond breaks observed in the experiment of LEE-induced damage in oligonucleotide tetramer CGTA. This concord suggests that the influence of the surroundings in the thin solid film on the LEE-induced DNA damage resembles that of the solvent. [source] |