Positive Allometry (positive + allometry)

Distribution by Scientific Domains


Selected Abstracts


Allometry, bilateral asymmetry and sexual differences in the vocal tract of common eiders Somateria mollissima and king eiders S. spectabilis

JOURNAL OF AVIAN BIOLOGY, Issue 2 2007
Edward H. Miller
Intraspecific sexual differences, high variation, and positive allometry of sexually-selected external display structures are common. Many sexually-selected anatomical specializations occur in the avian vocal tract but intraspecific variation and allometry have been investigated little. The tracheal bulla bulla syringealis occurs in males of most duck species. We quantified variation and size-scaling of the bulla, plus sexual differences in size of trachea, bronchi, and vocal muscles, for 62 common eiders Somateria mollissima and 51 king eiders S. spectabilis. Trends were similar in both species. Bullar ossification and definitive size occurred early in life: bullar size did not differ between first-year and older males. Bullar size did not vary more than size of other body parts (CVs of 3.4,7.0% for bullar length and breadth). Bullar size scaled to body size with negative allometry or isometry. Vocal muscles were 10,50% thicker in males than females, a much greater sexual difference than in body size (CVs of 3,6% on linear body-size variables). Vocal muscles were larger on the left side in both sexes and bilateral asymmetry was slightly more pronounced in males. Low variation and a trend towards negative allometry suggest that bullar size is under stabilizing selection; if bullar size affects vocal attributes of voice, then the latter cannot be condition-dependent. We recommend comparative research on vocal communication, vocal individuality and vocal-tract anatomy and function in eiders and other ducks. [source]


The evolution of rewards: seed dispersal, seed size and elaiosome size

JOURNAL OF ECOLOGY, Issue 3 2006
WILL EDWARDS
Summary 1We examine the relationship between the reward offered to ants to disperse seeds (elaiosome size) and seed size, and the possible mechanisms that may generate this relationship in Australian plant species. 2We used seed and elaiosome sizes from our own data set containing 87 Acacia species, supplemented with 22 species from a previously published data set, and 98 ,Other species' from 51 genera in 25 families, also from published data. 3The relationship between ln(elaiosome size) and ln(seed size) was determined using standard major axis (SMA) regression for both data sets. For the Other data set we also determined the relationship among species independent of the differences between genera, among genera independent of the differences between families, among genera and among families. We used SMA to test for differences in slopes between groups. 4We found a significant common slope amongst all subsets of the larger data set. The estimated common slope and the 95% confidence interval for the relationship between ln(elaiosome size) and ln(seed size) across all data sets fell above one (1.24, 95%CI = 1.17,1.32), suggesting positive allometry. Slopes were also significantly positive and strikingly similar between the Acacia species data set and the Other species data sets. Similar positive allometry was shown in the ,other' species data set among genera and families, and among species independent of genus means (,species effects'). 5Significant and consistent relationships between taxonomic levels, independent of relationships at other levels, along with significant relationships at the species level, and similarity of slopes, suggest independent convergence towards an underlying functional relationship that has persisted over long evolutionary periods. Our results therefore suggest that ants have been agents of selection on seed traits. 6Such a functional relationship might result from a trade-off in ant foraging behaviour between the benefit of the reward (elaiosome) and the cost of the dispersal (determined by seed size). Slopes > 1 would then suggest that ants need more than proportionally larger rewards to remove larger seeds. [source]


The allometric pattern of sexually size dimorphic feather ornaments and factors affecting allometry

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 7 2009
J. J. CUERVO
Abstract The static allometry of secondary sexual characters is currently subject to debate. While some studies suggest an almost universal positive allometry for such traits, but isometry or negative allometry for nonornamental traits, other studies maintain that any kind of allometric pattern is possible. Therefore, we investigated the allometry of sexually size dimorphic feather ornaments in 67 species of birds. We also studied the allometry of female feathers homologous to male ornaments (female ornaments in the following) and ordinary nonsexual traits. Allometries were estimated as reduced major axis slopes of trait length on tarsus length. Ornamental feathers showed positive allometric slopes in both sexes, although that was not a peculiarity for ornamental feathers, because nonsexual tail feathers also showed positive allometry. Migration distance (in males) and relative size of the tail ornament (in females) tended to be negatively related to the allometric slope of tail feather ornaments, although these results were not conclusive. Finally, we found an association between mating system and allometry of tail feather ornaments, with species with more intense sexual selection showing a smaller degree of allometry of tail ornaments. This study is consistent with theoretical models that predict no specific kind of allometric pattern for sexual and nonsexual characters. [source]


Growth of organ systems of Dentex dentex(L) and Psetta maxima(L) during larval development

JOURNAL OF FISH BIOLOGY, Issue 2 2005
R. Sala
Growth in volume of common dentex Dentex dentex and turbot Psetta maxima during larval development was studied by means of a quantitative histological method. A two-phase pattern of volume increase was recorded for both species, turbot volume being always higher than dentex volume. During the first phase, the increase was small but during the second phase volume rose sharply from 22 days post hatch (dph) and 17 dph onwards in dentex and turbot, respectively. In dentex, the specific growth rate (G) of the whole larva as well as that of all the structures studied (nervous tissue, trunk musculature, digestive tract, liver, pancreas, spleen and thymus) was always higher during the second phase, whereas in turbot, only total volume of the larva, trunk musculature and nervous tissue had a higher G during the same period. The pattern of allometric growth of digestive organs was similar for both species. These organs showed an initial positive allometric growth that later became near-isometric (digestive tract and liver) or negative (pancreas). In dentex, nervous tissue and trunk musculature showed near-isometry throughout the period studied. In turbot, nervous tissue exhibited negative allometry and trunk musculature changed from negative to positive allometry. In both species studied, the highest allometry coefficients were recorded for digestive organs before the larva switched to strict exotrophy. This would indicate the importance of the development of these organs for survival. [source]


Chondrocranial development in larval Rana sylvatica (Anura: Ranidae): Morphometric analysis of cranial allometry and ontogenetic shape change

JOURNAL OF MORPHOLOGY, Issue 2 2002
Peter M. Larson
Abstract This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed. J. Morphol. 252:131,144, 2002. © 2002 Wiley-Liss, Inc. [source]


Necks-for-sex or competing browsers?

JOURNAL OF ZOOLOGY, Issue 1 2010
A critique of ideas on the evolution of giraffe
Abstract Recent years have witnessed a resurgence in tests of the evolution and origin of the great height and long neck of the giraffe Giraffa camelopardalis. The two main hypotheses are (1) long necks evolved through competition with other browsers allowing giraffe to feed above them (,competing browsers' hypothesis); or (2) the necks evolved for direct use in intra-sexual combat to gain access to oestrous females (,necks-for-sex' hypothesis). Here, we review recent developments and their relative contribution in explaining giraffe evolution. Trends from Zimbabwean giraffes show positive allometry for male necks and isometry for female necks relative to body mass, while comparative analyses of the cervical versus the total vertebral column of the giraffe, okapi and fossil giraffe suggest selection specifically on neck length rather than on overall height. Both support the necks-for-sex idea. Neither study, however, allows us to refute one of the two ideas. We suggest new approaches for quantifying the relative importance of the two hypotheses. A direct analysis of selection pressure on neck length via survival and reproduction should clarify the mechanism maintaining the trait, while we predict that short robust ossicones should have arisen concurrently with incipient neck elongation if sexual selection was the main selective driver. The main challenge for the competing browser hypothesis is to explain why giraffe have remained about 2 m taller than their tallest competitors for over 1 Myr, whereas the sexual selection hypothesis cannot provide an adaptive explanation for the long neck of female giraffe. We conclude that probably both mechanisms have contributed to the evolution and maintenance of the long neck, and their relative importance can be clarified further. [source]


Sexual dimorphism in chelicerae size in three species of nuptial-gift spiders: a discussion of possible functions and driving selective forces

JOURNAL OF ZOOLOGY, Issue 3 2008
L. E. Costa-Schmidt
Abstract Positive allometric patterns observed for intersexual signalling characters are related to directional sexual selection, and supported by theoretical and empirical data. Recent models have shown that positive allometry may not hold as a rule if the influence of natural selection is added to the model. Here we tested these models applying traditional morphometrical techniques for the analysis of chelicerae sexual dimorphism and allometric patterns within the genus Paratrechalea: Paratrechalea azul, Paratrechalea galianoae and Paratrechalea ornata. Spider chelicerae are basically used for prey capture, but males of Paratrechalea also use the chelicerae to offer a nuptial gift during courtship, also presenting a clear size and colour sexual dimorphism supporting a possible role as a signal. Chelicerae size was male biased for all the variables studied and showed an isometric pattern, while females showed a higher variation. Our findings are in accordance with models of viability-related function for prey capture, questioning some statements proposed by the positive allometry model. [source]


An interspecific analysis of relative jaw-joint height in primates

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2010
Brooke A. Armfield
Abstract Jaw-joint height (JJH) above the occlusal plane is thought to be influenced by cranial base angle (CBA) and facial angulation during growth. To better understand how JJH relates to midline craniofacial form, we test the hypothesis that relative increases in JJH are correlated with increasing CBA flexion and facial kyphosis (i.e., ventral bending) across primates. We compared JJH above the occlusal plane to CBA and the angle of facial kyphosis (AFK) across adults from 82 species. JJH scales with positive allometry relative to a skull geometric mean in anthropoids and most likely strepsirrhines. Anthropoid regressions for JJH are elevated above strepsirrhines, whereas catarrhines exhibit a higher slope than platyrrhines. Semipartial correlations between relative JJH and both CBA and AFK show no association across a small strepsirrhine sample, limited associations among catarrhines and anthropoids, but strong correlations in platyrrhines. Contrary to our hypothesis, however, increases in relative JJH are correlated with relatively less flexed basicrania and more airorhynch faces (i.e., reduced ventral bending) in platyrrhines. The mosaic pattern of relationships involving JJH across primate clades points to multiple influences on JJH across primates. In clades showing little association with basicranial and facial angles, such as strepsirrhines, the potential morphological independence of JJH may facilitate a relative freedom for evolutionary changes related to masticatory function. Finally, failure to associate relative JJH and basicranial flexion in most clades suggests that the relatively taller JJH and more flexed basicrania of anthropoids compared to strepsirrhines may have evolved as an isolated event during the origin of anthropoids. Am J Phys Anthropol 142:519,530, 2010. © 2010 Wiley-Liss, Inc. [source]


The structural mechanics and evolution of aquaflying birds

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010
MICHAEL HABIB
Mass-specific bone strength was examined in the forelimb and hindlimb of 64 species of birds to determine if aquaflying birds (which utilize the wings for propulsion underwater) differ in their skeletal strength compared with other avian taxa. Long bone strengths were estimated from cross-sectional measurements. Compared with the expectation from geometric similarity, humeral section modulus in volant birds scales nearly isometrically, while femoral strength scales with significant positive allometry. Penguin mass-specific humeral strength is greatly elevated, but the average humeral strength in species that are propelled by the wings in both air and water do not differ from the values calculated in non-diving taxa. However, amphibious flyers have gracile femora. Comparative analyses using independent contrasts were utilized to examine the impact of phylogenetic signal. The residual measured for the penguin,procellariiform humeral strength contrast was larger in magnitude (residual of 2.14) than at any other node in the phylogeny. The data strongly indicate that the transition from an amphibious flight condition to a fully aquatic condition involves greater changes in mechanical factors than the transition from purely aerial locomotion to amphibious wing use. There remains the possibility that a historical effect, such as ancestral body size, has impacted the mechanical scaling of penguins. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 687,698. [source]