Pork Meat (pork + meat)

Distribution by Scientific Domains


Selected Abstracts


An updated review of Listeria monocytogenes in the pork meat industry and its products

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2006
D. Thévenot
Abstract Pork meat and processed pork products have been the sources of outbreaks of listeriosis in France and in other European countries during the last decade. The aim of this review is to understand how contamination, survival and growth of Listeria monocytogenes can occur in pork meat products. This study discusses the presence of L. monocytogenes in raw pork meat, in the processing environment and in finished products. The prevalence of L. monocytogenes generally increases from the farm to the manufacturing plants and this mainly due to cross-contamination. In many cases, this pathogen is present in raw pork meat at low or moderate levels, but foods involved in listeriosis outbreaks are those in which the organism has multiplied to reach levels significantly higher than 1000 CFU g,1. In such cases, L. monocytogenes has been able to survive and/or to grow despite the hurdles encountered during the manufacturing and conservation processes. Accordingly, attention must be paid to the design of food-processing equipment and to the effectiveness of the cleaning and disinfecting procedures in factories. Finally, the production of safe pork meat products is based on the implementation of general preventive measures such as Good Hygiene Practices, Good Manufacturing and the Hazard Analysis Critical Control Point. [source]


Combined use of bacteriocin-producing strains to control Listeria monocytogenes regrowth in raw pork meat

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 5 2010
Privat Kouakou
Summary Avoiding the presence of Listeria in meat and dairy products is a major challenge for the food industry. In this work, a Lactobacillus curvatus strain producing the bacteriocin sakacin P and a Pediococcus acidilactici strain producing another bacteriocin, pediocin AcH, were used as starter cultures under laboratory conditions in a Listeria -seeded raw-pork-meat matrix, which was then stored for 6 weeks at 4 °C. At 1 week intervals during the storage period, the antilisterial activity was evaluated. When either strain was added alone, the Listeria monocytogenes cfu count initially dropped from 102 cfu g,1 to an undetectable level by the end of week 1 or 2, but this was followed by a rebound (regrowth) 1 week later. When both strains were added together to the meat matrix, rebound was delayed, Listeria remaining undetected from the end of week 1 to the end of week 5. A rebound was observed 6 weeks post-inoculation, but fewer than 10 cfu g,1 were counted. The use of more than one bacteriocin-producing strain may thus overcome some of the problems limiting the effectiveness of bacteriocins in food systems. [source]


An updated review of Listeria monocytogenes in the pork meat industry and its products

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2006
D. Thévenot
Abstract Pork meat and processed pork products have been the sources of outbreaks of listeriosis in France and in other European countries during the last decade. The aim of this review is to understand how contamination, survival and growth of Listeria monocytogenes can occur in pork meat products. This study discusses the presence of L. monocytogenes in raw pork meat, in the processing environment and in finished products. The prevalence of L. monocytogenes generally increases from the farm to the manufacturing plants and this mainly due to cross-contamination. In many cases, this pathogen is present in raw pork meat at low or moderate levels, but foods involved in listeriosis outbreaks are those in which the organism has multiplied to reach levels significantly higher than 1000 CFU g,1. In such cases, L. monocytogenes has been able to survive and/or to grow despite the hurdles encountered during the manufacturing and conservation processes. Accordingly, attention must be paid to the design of food-processing equipment and to the effectiveness of the cleaning and disinfecting procedures in factories. Finally, the production of safe pork meat products is based on the implementation of general preventive measures such as Good Hygiene Practices, Good Manufacturing and the Hazard Analysis Critical Control Point. [source]


Prevalence of verotoxin-producing Escherichia coli (VTEC) and E. coli O157:H7 in French pork

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2002
J. Bouvet
Aims:,To determination the prevalence of VTEC in pork products and the surrounding environment of the pork plant (slaughterhouse and cutting plant), and characterization of the VTEC strains isolated (virulence genes and serotype). Methods and Results: ,Among the 2146 carcass and pork samples and 876 environmental samples (swabs of surfaces or materials), 328 (15%) and 170 (19%) were PCR-positive for stx genes respectively. VTEC strains were recovered from positive samples by colony hybridization or immunoconcentration, serotyped and genetically characterized. Strains of E. coli O157:H7 were not isolated from 3 uidA-positive samples detected by PCR. The VTEC isolates did not harbour eae, ehx and uidA genes. Conclusions: ,Pigs and pork meat may contain VTEC strains but characterization of the strains based on virulence factors showed that the potential danger of pork meat appears to be low since although all strains harboured a stx gene, they did not have other virulence genes. Significance and Impact of the Study:,General hygiene measures appear to be sufficient and specific hygiene measures for VTEC are not necessary at this time. The porcine VTEC strains isolated in our study probably do not present a hazard. [source]


Physicochemical properties of the thermal gel of water-washed meat in the presence of the more soluble fraction of porcine sarcoplasmic protein

ANIMAL SCIENCE JOURNAL, Issue 1 2007
Yuji MIYAGUCHI
ABSTRACT We investigated the physicochemical properties of the thermal gel of water-washed pork meat (WWM) in the presence of the soluble fraction of porcine sarcoplasmic protein (SP) obtained with ammonium sulfate at 75 percent saturation. Two precipitated fractions of SP were obtained at 0,50 percent and 50,75 percent saturation, named SP-f1 and SP-f2, respectively, and the soluble fraction obtained at 75 percent saturation, SP-f3, was used. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that SP-f3 contained mainly glyceraldehyde-3-phosphate dehydrogenase (GAPDH), while SP-f1 and SP-f2 had other SPs such as phosphorylase b, enolase, actin and phosphoglycerate mutase. The gel strength of WWM was greater when SP-f3 rather than one of various animal proteins such as bovine plasma (BP), egg white, or whey protein isolates (WPI), was added and SP-f3 had a gel-enhancing effect as good as that of polyphosphate (PP). The gel strength of WWM with added SP-f3 increased significantly with NaCl at 0.15 mol/L or more, but not in the absence of NaCl (0 mol/L). The effect of SP-f3 was evident at neutral pH and maximum gel strength was obtained at a pH above 6.0. Differential scanning calorimetric (DSC) analysis showed that an endothermic peak corresponding to myosin heads in WWM shifted to a lower temperature with the addition of SP-f3, as in the case of PP, though there was no such shift in the presence of other animal proteins (BP, egg white and WPI), suggesting that SP-f3 increases the gel strength of WWM through the dissociation of actomyosin similar to PP. Scanning electron microscopy (SEM) revealed wall-like structures among the protein strands in the WWM gel matrix in the presence of SP-f3. The results of DSC and SEM indicated that the formation of a gel network in meat products is reinforced with GAPDH in SP after the interaction between GAPDH and myofibrillar protein. [source]