Population Scale (population + scale)

Distribution by Scientific Domains


Selected Abstracts


BIODIVERSITY RESEARCH: Population expansion in an invasive grass, Microstegium vimineum: a test of the channelled diffusion model

DIVERSITY AND DISTRIBUTIONS, Issue 5 2010
Nathaniel P. Miller
Abstract Aim, The greatest biodiversity impact of non-native plant species is caused by rapid expansion of colonist populations. Unfortunately, invasion has rarely been documented in real time at a population scale, and demographic mechanisms of invasion remain unclear. Our goal is to describe real-time expansion of populations, using channelled diffusion as a null model. Location, The study examined three populations of the invasive annual grass Microstegium vimineum in mature second-growth forests of south-eastern Ohio and nearby West Virginia, USA. Methods, Distributions were recorded in belt transects perpendicular to population edges over a period of 3 years. A second group of belt transects documented spread along five types of potential movement corridor. Observed changes in distribution were compared with predictions from a diffusion model. A seed-sowing experiment tested seed availability, microsite quality and proximity to potential movement corridors as factors controlling population spread. Results, Population boundaries showed little change over the study period. Colonization was limited by propagule availability over distances as little as 0.25 m, and to a lesser extent by litter cover. Populations did not advance along several potential movement corridors including unpaved roads, off-road vehicle trails and footpaths. Advance was observed along deer trails and stream courses but did not conform to the wave-form distribution predicted by diffusion theory. During the study, seeds were moved out of experimental plots by sheet flow and minor flooding events along small streams. Main conclusion, At a population level, invasion is driven by processes that are episodic in time and non-random in space , probably a common condition in non-native plant species. Spatially realistic models are likely to be more useful than diffusive models in managing invasions at these scales. [source]


Shrimp,a dynamic model of heavy-metal uptake in aquatic macrofauna

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2001
Teresa Castro Simas
Abstract A dynamic model for prediction of bioaccumulation in aquatic macrofauna is described. The model, entitled SHRIMP (Simulation of Heavy-metal Rate of Intake for Macrofaunal sPecies), consists of five coupled submodels, which simulate individual growth, population dynamics, metal transport in the abiotic part of the system, metal bioaccumulation at the organism level, and upscaling of individual contamination to the population scale. The sublethal effects of metal toxicity on individual and population levels are shown to act through the reduction of individual growth rates. The model was tested for cadmium and mercury using epibenthic crustacea from an estuarine system. Individual and population patterns of bioaccumulation were analyzed by comparing the simulated results of five different scenarios of dissolved metal concentrations. Model results suggest that the subtle effect of growth reduction due to metal toxicity is sufficient to cause a decrease on population numbers simply by affecting the growth of the mature females and males. [source]


Managing heterogeneity in elephant distribution: interactions between elephant population density and surface-water availability

JOURNAL OF APPLIED ECOLOGY, Issue 3 2007
SIMON CHAMAILLÉ-JAMMES
Summary 1Concerns over the ecological impacts of high African elephant Loxodonta africana densities suggest that it may be necessary to control their numbers locally, although the best management approach is still widely debated. Artificial water supply is believed to be a major cause of local overabundance, and could be used as a potential tool to regulate elephant distribution and impact across landscapes, but its effect on elephants at the population scale has never been studied. 2We assessed how dry-season surface-water availability constrained the distribution of an entire elephant population, using aerial and waterhole census data from Hwange National Park, Zimbabwe. The study was initiated in 1986, when the population was released from culling. We studied how artificial waterholes, holding water throughout the dry season, and vegetation production, estimated from a normalized difference vegetation index (NDVI), influenced the long-term distribution of elephant densities. We also investigated how the elephant distribution responded to changes in population density and annual rainfall, a driver of surface-water availability. 3Long-term dry-season elephant densities across the park tended to increase with vegetation production, and increased asymptotically with the density of artificial waterholes. 4Since the culling stopped, dry-season elephant densities have increased in most areas of the park, except in areas of low vegetation production and low water availability. Interannual fluctuations in elephant distribution are linked to rainfall variability through its effect on surface-water availability. During dry years elephants concentrated in areas where artificial pumping maintained surface-water availability during the dry season. 5During dry years elephant numbers at waterholes increased because of reduced surface-water availability, and elephants were distributed more evenly across waterholes, although active waterholes were unevenly distributed across the park. 6Synthesis and applications. Surface-water availability drives the distribution and abundance of elephants within Hwange National Park, and therefore appears to be at the heart of the trade-off between elephant conservation and the extent of their impact on ecosystems. Artificial manipulation of surface water is one of the tools available for the management of elephant populations and should not be overlooked when considering options for controlling elephant numbers in places where they are considered to be overabundant. [source]


Non-syndromic, autosomal-recessive deafness

CLINICAL GENETICS, Issue 5 2006
MB Petersen
Non-syndromic deafness is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Autosomal-recessive genes are responsible for about 80% of the cases of hereditary non-syndromic deafness of pre-lingual onset with 23 different genes identified to date. In the present article, we review these 23 genes, their function, and their contribution to genetic deafness in different populations. The wide range of functions of these DFNB genes reflects the heterogeneity of the genes involved in hearing and hearing loss. Several of these genes are involved in both recessive and dominant deafness, or in both non-syndromic and syndromic deafness. Mutations in the GJB2 gene encoding connexin 26 are responsible for as much as 50% of pre-lingual, recessive deafness. By contrast, mutations in most of the other DFNB genes have so far been detected in only a small number of families, and their contribution to deafness on a population scale might therefore be limited. Identification of all genes involved in hereditary hearing loss will help in our understanding of the basic mechanisms underlying normal hearing, in early diagnosis and therapy. [source]


Invasion impacts diversity through altered community dynamics

JOURNAL OF ECOLOGY, Issue 6 2005
KATHRYN A. YURKONIS
Summary 1Invading plant species often alter community structure, composition and, in some instances, reduce local diversity. However, the community dynamics underlying these impacts are relatively unknown. 2Declines in species richness with invasion may occur via displacement of resident species and/or reduction of seedling establishment by the invader. These two mechanisms differ in the demographic stage of the interaction. 3We document turnover dynamics using long-term permanent plot data to assess the mechanism(s) of invasion impacts of four exotic species on a mixed community of native and exotic species. These mechanisms were evaluated at both the neighbourhood (1-m2 plot) and population (individual species) scales. 4During invasion, species richness declined with increasing invader cover for three of the four invaders. All invaders reduced colonization rates, but had no effect on extinction rates at the neighbourhood scale. Populations differed in their susceptibility to invasion impacts, with significant reductions in colonization for 10 of 25 (40%) species and increases in extinction for only 4 of 29 (14%) species. 5At neighbourhood and population scales, influences of invasion on community dynamics were essentially the same for all invaders regardless of life-form. While individual resident species had some increase in extinction probability, community richness impacts were largely driven by colonization limitation. 6The consistency of invasion impacts across life-forms suggests establishment limitation as a general mechanism of invasion impact. This common causal mechanism should be explored in other systems to determine the extent of its generality. [source]