Population Pairs (population + pair)

Distribution by Scientific Domains


Selected Abstracts


Patterns of isozyme variation as indicators of biogeographic history in Pilgerodendron uviferum (D. Don) Florín

DIVERSITY AND DISTRIBUTIONS, Issue 2 2002
A. C. Premoli
Abstract. The effects of Pleistocene glaciations on the genetic characteristics of the most austral conifer in the world, Pilgerodendron uviferum, were analysed with specific reference to the hypothesis that the species persisted locally in ice-free areas in temperate South America. It was expected that genetic variation would decrease with latitude, given that ice fields were larger in southern Patagonia and thus refugia were probably located towards the northern distributional limit of the species as suggested by the fossil record. In addition, an increase in among-population genetic divergence was expected with increasing distance to putative glacial refugia. We examined the relationship between location and within-population variability indices of 20 Pilgerodendron populations derived from isozyme analyses. We analysed possible refugia hypotheses by the distribution of allele frequencies using multivariate discriminant analysis. The degree of genetic differentiation with geographical distance between all population pairs was investigated by Mantel tests. Results indicated that Pilgerodendron populations are highly monomorphic, probably reflecting past population bottlenecks and reduced gene flow. Southernmost populations tend to be the least genetically variable and were therefore probably more affected by glacial activity than northern ones. Populations located outside ice limits seem to have been isolated during the glacial period. The presence of centres of genetic diversity, together with the lack of a significant correlation between genetic and geographical distances and the absence of geographical patterns of allelic frequencies at most analysed alleles, may indicate that Pilgerodendron did not advance southward after the last glaciation from a unique northern refugium, but spread from several surviving populations in ice-free areas in Patagonia instead. [source]


ANTHROPOGENIC EFFECTS ON POPULATION GENETICS OF PHYTOPHAGOUS INSECTS ASSOCIATED WITH DOMESTICATED PLANTS

EVOLUTION, Issue 12 2007
Nadir Alvarez
The hypothesis of isolation by distance (IBD) predicts that genetic differentiation between populations increases with geographic distance. However, gene flow is governed by numerous factors and the correlation between genetic differentiation and geographic distance is never simply linear. In this study, we analyze the interaction between the effects of geographic distance and of wild or domesticated status of the host plant on genetic differentiation in the bean beetle Acanthoscelides obvelatus. Geographic distance explained most of the among-population genetic differentiation. However, IBD varied depending on the kind of population pairs for which the correlation between genetic differentiation and geographic distance was examined. Whereas pairs of beetle populations associated with wild beans showed significant IBD (P < 10,4), no IBD was found when pairs of beetle populations on domesticated beans were examined (P= 0.2992). This latter result can be explained by long-distance migrations of beetles on domesticated plants resulting from human exchanges of bean seeds. Beetle populations associated with wild beans were also significantly more likely than those on domesticated plants to contain rare alleles. However, at the population level, beetles on cultivated beans were similar in allelic richness to those on wild beans. This similarity in allelic richness combined with differences in other aspects of the genetic diversity (i.e., IBD, allelic diversity) is compatible with strongly contrasting effects of migration and drift. This novel indirect effect of human actions on gene flow of a serious pest of a domesticated plant has important implications for the spread of new adaptations such as resistance to pesticides. [source]


POPULATION DIFFERENTIATION IN THE BEETLE TRIBOLIUM CASTANEUM.

EVOLUTION, Issue 3 2007

We used joint-scaling analyses in conjunction with rearing temperature variation to investigate the contributions of additive, non-additive, and environmental effects to genetic divergence and incipient speciation among 12 populations of the red flour beetle, Tribolium castaneum, with small levels of pairwise nuclear genetic divergence (0.033 < Nei's D < 0.125). For 15 population pairs we created a full spectrum of line crosses (two parental, two reciprocal F1's, four F2's, and eight backcrosses), reared them at multiple temperatures, and analyzed the numbers and developmental defects of offspring. We assayed a total of 219,388 offspring from 5147 families. Failed crosses occurred predominately in F2's, giving evidence of F2 breakdown within this species. In all cases where a significant model could be fit to the data on offspring number, we observed at least one type of digenic epistasis. We also found maternal and cytoplasmic effects to be common components of divergence among T. castaneum populations. In some cases, the most complex model tested (additive, dominance, epistatic, maternal, and cytoplasmic effects) did not provide a significant fit to the data, suggesting that linkage or higher order epistasis is involved in differentiation between some populations. For the limb deformity data, we observed significant genotype-by-environment interaction in most crosses and pure parent crosses tended to have fewer deformities than hybrid crosses. Complexity of genetic architecture was not correlated with either geographic distance or genetic distance. Our results support the view that genetic incompatibilities responsible for postzygotic isolation, an important component of speciation, may be a natural but serendipitous consequence of nonadditive genetic effects and structured populations. [source]


ADAPTIVE MIGRATORY DIVERGENCE AMONG SYMPATIRIC BROK CHARR POPULATIONS

EVOLUTION, Issue 3 2005
Dylan J. Fraser
Abstract Ecological processes clearly contribute to population divergence, yet how they interact over complex life cycles remains poorly understood. Notably, the evolutionary consequences of migration between breeding and nonbreeding areas have received limited attention. We provide evidence for a negative association between interpopulation differences in migration (between breeding and feeding areas, as well as within each) and the amount of gene flow (m) among three brook charr (Salvelinus fontinalis) populations inhabitingMistassini Lake, Quebec, Canada. Individuals (n=1166) captured throughout lake feeding areas over two consecutive sampling years were genotyped (10 microsatellites) and assigned to one of the three populations. Interpopulation differences in migration were compared based on spatial distribution overlap, habitat selection, migration distance within feeding areas, and morphology. We observed a temporally stable, heterogeneous spatial distribution within feeding areas among populations, with the extent of spatial segregation related to differential habitat selection (represented by littoral zone substrate). Spatial segregation was lowest and gene flow highest (m=0.015) between two populations breeding in separate lake inflows. Segregation was highest and gene flow was lowest (mean m=0.007) between inflow populations and a third population breeding in the outflow. Compared to outflow migrants, inflow migrants showed longer migration distances within feeding areas(64,70 km vs. 22 km). After entering natal rivers to breed, inflow migrants also migrated longer distances (35,75 km) and at greater elevations (50,150 m) to breeding areas than outflow migrants (0,15 km; ,10,0 m). Accordingly, inflow migrants were more streamlined with longer caudal regions, traits known to improve swimming efficiency. There was no association between the geographic distance separating population pairs and the amount of gene flow they exchanged. Collectively, our results are consistent with the hypothesis that reduced gene flow between these brook charr populations results from divergent natural selection leading to interpopulation differences in migration. They also illustrate how phenotypic and genetic differentiation may arise over complex migratory life cycles. [source]


Do linear landscape elements in farmland act as biological corridors for pollen dispersal?

JOURNAL OF ECOLOGY, Issue 1 2010
Anja Van Geert
Summary 1.,Habitat fragmentation in agricultural landscapes has reduced the population sizes of many plant species while increasing their spatial isolation. Restoration or maintenance of the connectivity by gene flow between the fragmented patches may be determinant to sustaining viable populations, especially for insect-pollinated species. Functional biological corridors facilitating pollen flow between remnants in a human-dominated matrix might achieve this. 2.,Dye dispersal was investigated for the extremely fragmented insect-pollinated herb Primula vulgaris, using fluorescent dye particles as pollen analogues, in a study site comprising 20 populations, of which 13 pairs were physically connected by a linear landscape elements (LLEs, ditches), and 11 pairs were not connected by an LLE. The dye deposition events were used to fit a model of pollen dispersal at the landscape level. We examined whether existing LLEs in the intensively used agricultural landscape act as functional corridors for pollen dispersal. The effects of LLE length and size and plant density of the recipient population on the dispersal patterns were tested. 3.,Dye dispersal showed a leptokurtic decay distribution, with 80% of the dye transfers occurring at less than 85.1 m, and a maximal distance of 1010.8 m. The mean distance travelled by fluorescent dye particles based on the dye dispersal model was , = 87 m. 4.,Dye dispersal between populations was found to be significantly higher when populations were connected by an LLE, than when populations were unconnected. For the group of population pairs connected by an LLE, dye deposition significantly decreased with the distance to dye source, but was not related to recipient population size and plant density. 5.,Synthesis. Our study is, to our knowledge, the first to demonstrate that existing LLEs in an intensively used farmland may act as functional biological corridors facilitating pollen dispersal through pollinator movements. The maintenance or restoration of a network of populations connected by LLEs, but also by other landscape structures (e.g. population relays in vegetation patches and networks of small elements allowing indirect connections) should be strongly encouraged. [source]


Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plant

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2005
G. Nies
Abstract Habitat configuration is expected to have a major influence on genetic exchange and evolutionary divergence among populations. Aquatic organisms occur in two fundamentally different habitat types, the sea and freshwater lakes, making them excellent models to study the contrasting effects of continuity vs. isolation on genetic divergence. We compared the divergence in post-glacial populations of a cosmopolitan aquatic plant, the pondweed Potamogeton pectinatus that simultaneously occurs in freshwater lakes and coastal marine sites. Relative levels of gene flow were inferred in 12 lake and 14 Baltic Sea populations in northern Germany using nine highly polymorphic microsatellite markers developed for P. pectinatus. We found highly significant isolation-by-distance in both habitat types (P < 0.001). Genetic differentiation increased approximately 2.5-times faster among freshwater populations compared with those from the Baltic Sea. As different levels of genetic drift or population history cannot explain these differences, higher population connectivity in the sea relative to freshwater populations is the most likely source of contrasting evolutionary divergence. These findings are consistent with the notion that freshwater angiosperms are more conducive to allopatric speciation than their life-history counterparts in the sea, the relative species poor seagrasses. Surprisingly, population pairs from different habitat types revealed almost maximal genetic divergence expected for complete reproductive isolation, regardless of their respective geographical distance. Hence, the barrier to gene flow between lake and sea habitat types cannot be due to dispersal limitation. We may thus have identified a case of rapid incipient speciation in post-glacial populations of a widespread aquatic plant. [source]


Variation of haplotype distributions of two genomic regions of Citrus tristeza virus populations from eastern Spain

MOLECULAR ECOLOGY, Issue 2 2003
F. D'Urso
Abstract Genetic variation in natural populations of Citrus tristeza virus (CTV) was studied using haplotypes detected by single-strand conformation polymorphism (SSCP) analysis of two genomic regions (p20 gene and segment A, located in ORF1a). Analysis of 254 samples from 125 trees, collected at 12 different sites, yielded 8 different haplotypes for p20 and 5 for segment A. The most frequent haplotype of p20 was predominant at all sites, but several sites differed in the predominance of segment A haplotypes. At most sites, the homozygosity observed for the p20 gene tended to be higher than expected in a neutral evolution, whereas the opposite was true for segment A. Comparison of the populations at different sites showed that 44 of the 66 possible population pairs were genetically distinct for segment A, but only six pairs differed for the p20 gene. Analysis of molecular variance grouping trees by site, scion variety, rootstock or age, showed that variation in segment A was significantly affected by site, tree age and rootstock, and that variation between trees in each group and within trees was even more important. In contrast, variation in p20 was affected only by site and rootstock, each factor contributing to < 2% of the variation. The data suggest that sequence variations in segment A must be functionally less important and that it has less evolutionary constraints than p20. Detection of different haplotypes in neighbour trees or in samples from the same tree may help explain part of the variability observed in CTV symptom expression. [source]