Population Genetic Diversity (population + genetic_diversity)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Low population differentiation and high genetic diversity in the invasive species Carduus acanthoides L. (Asteraceae) within its native range in the Czech Republic

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009
BOHUMIL MANDÁK
Colonizing species are predicted to suffer from reductions in genetic diversity during founding events. Although there is no unique mode of reproduction that is characteristic of successful plant colonizers, many of them are predominantly self-fertilizing or apomictic species, and almost all outcrossing colonizers are self-compatible. Carduus acanthoides comprises a species of disturbed habitats with wind-dispersed seeds that colonizes open spaces of various sizes. Population genetic diversity was expressed by assessing patterns of variation at nine putatively neutral allozyme loci within and among 20 natural populations in its native distribution range in the Czech Republic. Overall, C. acanthoides displayed high levels of genetic diversity compared to other herbaceous plants. The percentage of polymorphic loci was 84.5, with values of 2.37, 0.330, and 0.364 for the mean number of alleles per polymorphic locus (A), observed heterozygosity (Ho), and expected heterozygosity (He), respectively. There was only weak evidence of inbreeding within populations (f = 0.097) and very low genetic differentiation among populations (, = 0.085). Analyses of the data provide strong evidence for isolation-by-distance for the whole study area. Even the colonizing species, C. acanthoides, currently supports a substantial amount of allozyme variation at both the species and population levels. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 596,607. [source]


Susceptibility of Common and Rare Plant Species to the Genetic Consequences of Habitat Fragmentation

CONSERVATION BIOLOGY, Issue 3 2007
OLIVIER HONNAY
diversidad genética; endogamia; fragmentación de hábitat; sistema reproductivo; tamaño poblacional Abstract:,Small plant populations are more prone to extinction due to the loss of genetic variation through random genetic drift, increased selfing, and mating among related individuals. To date, most researchers dealing with genetic erosion in fragmented plant populations have focused on threatened or rare species. We raise the question whether common plant species are as susceptible to habitat fragmentation as rare species. We conducted a formal meta-analysis of habitat fragmentation studies that reported both population size and population genetic diversity. We estimated the overall weighted mean and variance of the correlation coefficients among four different measures of genetic diversity and plant population size. We then tested whether rarity, mating system, and plant longevity are potential moderators of the relationship between population size and genetic diversity. Mean gene diversity, percent polymorphic loci, and allelic richness across studies were positively and highly significantly correlated with population size, whereas no significant relationship was found between population size and the inbreeding coefficient. Genetic diversity of self-compatible species was less affected by decreasing population size than that of obligate outcrossing and self-compatible but mainly outcrossing species. Longevity did not affect the population genetic response to fragmentation. Our most important finding, however, was that common species were as, or more, susceptible to the population genetic consequences of habitat fragmentation than rare species, even when historically or naturally rare species were excluded from the analysis. These results are dramatic in that many more plant species than previously assumed may be vulnerable to genetic erosion and loss of genetic diversity as a result of ongoing fragmentation processes. This implies that many fragmented habitats have become unable to support plant populations that are large enough to maintain a mutation-drift balance and that occupied habitat fragments have become too isolated to allow sufficient gene flow to enable replenishment of lost alleles. Resumen:,Las poblaciones pequeñas de plantas son más propensas a la extinción debido a la pérdida de variación genética por medio de la deriva génica aleatoria, el incremento de autogamia y la reproducción entre individuos emparentados. A la fecha, la mayoría de los investigadores que trabajan con erosión genética en poblaciones fragmentadas de plantas se han enfocado en las especies amenazadas o raras. Cuestionamos si las especies de plantas comunes son tan susceptibles a la fragmentación del hábitat como las especies raras. Realizamos un meta análisis formal de estudios de fragmentación que reportaron tanto tamaño poblacional como diversidad genética. Estimamos la media general ponderada y la varianza de los coeficientes de correlación entre cuatro medidas de diversidad genética y de tamaño poblacional de las plantas. Posteriormente probamos si la rareza, el sistema reproductivo y la longevidad de la planta son moderadores potenciales de la relación entre el tamaño poblacional y la diversidad genética. La diversidad genética promedio, el porcentaje de loci polimórficos y la riqueza alélica en los estudios tuvieron una correlación positiva y altamente significativa con el tamaño poblacional, mientras que no encontramos relación significativa entre el tamaño poblacional y el coeficiente de endogamia. La diversidad genética de especies auto compatibles fue menos afectada por la reducción en el tamaño poblacional que la de especies exogámicas obligadas y especies auto compatibles, pero principalmente exogámicas. La longevidad no afectó la respuesta genética de la población a la fragmentación. Sin embargo, nuestro hallazgo más importante fue que las especies comunes fueron tan, o más, susceptibles a las consecuencias genéticas de la fragmentación del hábitat que las especies raras, aun cuando las especies histórica o naturalmente raras fueron excluidas del análisis. Estos resultados son dramáticos porque muchas especies más pueden ser vulnerables a la erosión genética y a la pérdida de diversidad genética como consecuencia de los procesos de fragmentación que lo se asumía previamente. Esto implica que muchos hábitats fragmentados han perdido la capacidad para soportar poblaciones de plantas lo suficientemente grandes para mantener un equilibrio mutación-deriva y que los fragmentos de hábitat ocupados están tan aislados que el flujo génico es insuficiente para permitir la reposición de alelos perdidos. [source]


Microbial diversity , insights from population genetics

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2008
Ted H. M. Mes
Summary Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, Ne, is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 103 and 107 suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what Ne of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities. [source]


Genetic diversity and migration patterns of the aquatic macrophyte Potamogeton malaianus in a potamo-lacustrine system

FRESHWATER BIOLOGY, Issue 6 2009
YUANYUAN CHEN
Summary 1.,Previously, the Yangtze River connected thousands of shallow lakes which together formed a potamo-lacustrine system capable of sustaining a rich variety of submerged macrophytes. 2.,Potamogeton malaianus is one of the dominant submerged macrophytes in many lakes of this area. Genetic variation and population structure of P. malaianus populations from ten lakes in the potamo-lacustrine system were assessed using inter-simple sequence repeat markers. 3.,Twelve primer combinations produced a total of 166 unambiguous bands of which 117 (70.5%) were polymorphic. Potamogeton malaianus exhibited a moderate level of population genetic diversity (PP = 70.5%, HE = 0.163 and I = 0.255), as compared with that of plants in the same habitat and range. The main factors responsible for this moderate value were the plant's mixed breeding system (both sexual and asexual) and the hydrological connectivity among habitats. 4.,F statistics, calculated using different approaches, consistently revealed a moderate genetic differentiation among populations, contributing about 20% of total genetic diversity. An estimate of gene flow (using FST) suggested that gene flow played a more important role than genetic drift in the current population genetic structure of P. malaianus (Nm = 1.131). 5.,The genetic diversity of P. malaianus did not increase downstream. A high level of linkage,disequilibrium at the whole population level suggested that metapopulation processes may affect genetic structure. The migration pattern of P. malaianus was best explained by a two-dimensional stepping stone model, indicating that bird-mediated dispersal could greatly influence gene movements among lakes. [source]


Effect of genetic variance in plant quality on the population dynamics of a herbivorous insect

JOURNAL OF ANIMAL ECOLOGY, Issue 4 2009
Nora Underwood
Summary 1Species diversity can affect many ecological processes; much less is known about the importance of population genetic diversity, particularly for the population dynamics of associated species. Genetic diversity within a host species can create habitat diversity; when associated species move among hosts, this variation could affect populations additively (an effect of average habitat) or non-additively (an effect of habitat variance). Mathematical theory suggests that non-additive effects of variance among patches should influence population size, but this theory has not been tested. 2This prediction was tested in the field by asking whether aphid population dynamics parameters on strawberry plant genotype mixtures were additive or non-additive functions of parameters on individual plant genotypes in monoculture using model fitting. 3Results show that variance in quality among plant genotypes can have non-additive effects on aphid populations, and that the form of this effect depends on the particular plant genotypes involved. 4Genetic variation among plants also influenced the spatial distribution of aphids within plant populations, but the number of plant genotypes per population did not affect aphid populations. 5These results suggest that predicting the behaviour of populations in heterogeneous environments can require knowledge of both average habitat quality and variance in quality. [source]


Patterns of population genetic diversity in riparian and aquatic plant species along rivers

JOURNAL OF BIOGEOGRAPHY, Issue 9 2010
Olivier Honnay
Abstract Aim, The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ,unidirectional dispersal hypothesis' and is the genetic equivalent of the more generally known ,drift paradox'. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location, The Meuse River (Belgium) and rivers world-wide. Methods, First, we used amplified fragment length polymorphism markers to compare patterns of within- and between-population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta-analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results, Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta-analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions, Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity. [source]


Phylogeography of the world's tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugia

JOURNAL OF BIOGEOGRAPHY, Issue 1 2010
Paul G. Nevill
Abstract Aim, There is a need for more Southern Hemisphere phylogeography studies, particularly in Australia, where, unlike much of Europe and North America, ice sheet cover was not extensive during the Last Glacial Maximum (LGM). This study examines the phylogeography of the south-east Australian montane tree species Eucalyptus regnans. The work aimed to identify any major evolutionary divergences or disjunctions across the species' range and to examine genetic signatures of past range contraction and expansion events. Location, South-eastern mainland Australia and the large island of Tasmania. Methods, We determined the chloroplast DNA haplotypes of 410 E. regnans individuals (41 locations) based on five chloroplast microsatellites. Genetic structure was examined using analysis of molecular variance (AMOVA), and a statistical parsimony tree was constructed showing the number of nucleotide differences between haplotypes. Geographic structure in population genetic diversity was examined with the calculation of diversity parameters for the mainland and Tasmania, and for 10 regions. Regional analysis was conducted to test hypotheses that some areas within the species' current distribution were refugia during the LGM and that other areas have been recolonized by E. regnans since the LGM. Results, Among the 410 E. regnans individuals analysed, 31 haplotypes were identified. The statistical parsimony tree shows that haplotypes divided into two distinct groups corresponding to mainland Australia and Tasmania. The distribution of haplotypes across the range of E. regnans shows strong geographic patterns, with many populations and even certain regions in which a particular haplotype is fixed. Many locations had unique haplotypes, particularly those in East Gippsland in south-eastern mainland Australia, north-eastern Tasmania and south-eastern Tasmania. Higher haplotype diversity was found in putative refugia, and lower haplotype diversity in areas likely to have been recolonized since the LGM. Main conclusions, The data are consistent with the long-term persistence of E. regnans in many regions and the recent recolonization of other regions, such as the Central Highlands of south-eastern mainland Australia. This suggests that, in spite of the narrow ecological tolerances of the species and the harsh environmental conditions during the LGM, E. regnans was able to persist locally or contracted to many near-coastal refugia, maintaining a diverse genetic structure. [source]


Phylogeographical structure in the coastal species Senecio rodriguezii (Asteraceae), a narrowly distributed endemic Mediterranean plant

JOURNAL OF BIOGEOGRAPHY, Issue 7 2009
Arántzazu Molins
Abstract Aim, Our goals were (1) to assess the levels of chloroplast DNA variation in a narrowly distributed plant restricted to continental islands, (2) to ascertain whether a phylogeographical structure is present in plants restricted to coastal linear systems, and (3) to interpret the results in the light of the known palaeogeography of these islands. Location, The Eastern Balearic Islands (Majorca and Minorca) in the Western Mediterranean Basin. Methods, Sampling included 134 individuals from 28 populations of Senecio rodriguezii covering the entire range of the species. Sequences of the chloroplast genome (trnT,trnL spacer) were obtained and parameters of population genetic diversity and substructure were determined (hsht, Gst). The geographical structure of genetic variation was assessed by an analysis of molecular variance (AMOVA). Additionally, a spatial AMOVA (SAMOVA) was used to identify groups of populations that were geographically homogeneous and maximally differentiated from each other. Finally, a pattern of isolation by distance was assessed by testing the correlation between the matrix of pairwise ,ST values and the matrix of geographical distances between pairs of populations using a Mantel test. Results, Seven haplotypes were detected in S. rodriguezii. Only two of them were shared between islands; all of the others were restricted to Majorca (two) or Minorca (three). Overall, we found high levels of genetic diversity and significant geographical structuring of cpDNA markers. Most of the variation detected can be attributed to differences among populations (84.6%), but there was also a significant differentiation between the islands. Main conclusions, Our results support the view that the Balearic Islands constitute a reservoir of genetic diversity, not only for widespread Mediterranean taxa, but also for endemic ones. The intraspecific genetic structure found in S. rodriguezii suggests that its population history was dominated by both expansion and contraction events. This has resulted in a species that is highly structured genetically, showing very few shared haplotypes between islands, and a high number of haplotypes restricted to small geographical areas within the islands. Changes in habitat availability and dynamic processes of population fragmentation and connectivity due to repeated cycles of sea-level changes during the Quaternary are the possible underlying factors that have shaped the cpDNA pool of this endemic species on a regional scale. [source]


Temporal and spatial genetic variation in a metapopulation of the annual Erysimum cheiranthoides on stony river banks

JOURNAL OF ECOLOGY, Issue 1 2009
Olivier Honnay
Summary 1Metapopulation dynamics , the recurrent extinction and colonization in spatially discrete habitats , is expected to strongly affect within and between population genetic diversity. So far, however, accounts of true plant metapopulations are extremely scarce. 2We monitored the colonization and extinction dynamics of an assemblage of populations of the annual Erysimum cheiranthoides on stony river banks during three consecutive years. Each year, winter flooding drives some populations to extinction, while vacant banks may become colonized. We describe the dynamics of these ephemeral populations using amplified fragment length polymorphism (AFLP) markers to quantify changes in the metapopulation genetic structure over time, and assessing the direction and relative amount of migration and colonization events. 3Average extinction and colonization rates were high (0.39 and 0.34, respectively). While population genetic differentiation (FST) tripled from 0.06 in 2005 to 0.17 in 2007, total metapopulation genetic diversity remained fairly constant through the years. Genetic assignment analyses allowed assigning more than 50% of the genotyped individuals to populations extant the year before. Colonizing individuals originated from different source populations (, << 1) and there was considerable evidence of upstream seed dispersal. 4The degree and pattern of spatial genetic structure varied between years and was related to variation in the flooding intensity of the Meuse River through the years. Possibly, activation of the soil seed bank also played a role in structuring the genetic make-up of the populations. 5Because migration and colonization events were qualitatively equal, and colonizing individuals originated from different sources, the increase in FST was in agreement with previous theoretical work. Very high migration and colonization rates, and the short monitoring period, may explain why there was no loss of genetic diversity from the metapopulation through recurrent extinction and colonization events. 6Synthesis. This study gives one of the first accounts of the dynamics of a true plant metapopulation. Temporal monitoring of genetic variation gave evidence of extensive and bidirectional seed dispersal, highly variable and increasing genetic differentiation, and rather constant within population genetic diversity. An important suggestion from this research is to include a dormant seed stage in further theoretical work on (meta) population genetics. [source]


Development and characterization of microsatellite markers to study population genetic diversity of Przewalski's naked carp Gymnocypris przewalskii in China

JOURNAL OF FISH BIOLOGY, Issue 9 2009
Y. Zhang
Two populations of Przewalski's naked carp Gymnocypris przewalskii, 30 individuals per population, were screened for 10 microsatellite loci. Moderate allele variation was found in these loci with two to eight alleles per locus. The expected and observed heterozygosity ranged from 0·019 to 0·805 and from 0·160 to 0·575, respectively. [source]


Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae)

MOLECULAR ECOLOGY, Issue 14 2009
YOUNG JIN CHUN
Abstract Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native European and invasive North American populations (QST , FST analysis). Our results indicate that invasive and native populations harbour comparable levels of amplified fragment length polymorphism variation, a pattern consistent with multiple independent introductions from a diverse European gene pool. However, it was observed that the genetic variation reduced during subsequent invasion, perhaps by founder effects and genetic drift. Comparison of genetically based quantitative trait differentiation (QST) with its expectation under neutrality (FST) revealed no evidence of disruptive selection (QST > FST) or stabilizing selection (QST < FST). One exception was found for only one trait (the number of stems) showing significant sign of stabilizing selection across all populations. This suggests that there are difficulties in distinguishing the effects of nonadaptive population processes and natural selection. Multiple introductions of purple loosestrife may have created a genetic mixture from diverse source populations and increased population genetic diversity, but its link to the adaptive differentiation of invasive North American populations needs further research. [source]


Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle

MOLECULAR ECOLOGY, Issue 3 2007
B. MARTÍNEZ-CRUZ
Abstract The fragmentation of a population may have important consequences for population genetic diversity and structure due to the effects of genetic drift and reduced gene flow. We studied the genetic consequences of the fragmentation of the Spanish imperial eagle (Aquila adalberti) population into small patches through a temporal analysis. Thirty-four museum individuals representing the population predating the fragmentation were analysed for a 345-bp segment of the mitochondrial control region and a set of 10 nuclear microsatellite loci. Data from a previous study on the current population (N = 79) were re-analysed for this subset of 10 microsatellite markers and results compared to those obtained from the historical sample. Three shared mitochondrial haplotypes were found in both populations, although fluctuations in haplotype frequencies and the occurrence of a fourth haplotype in the historical population resulted in lower current levels of haplotype and nucleotide diversity. However, microsatellite markers revealed undiminished levels of nuclear diversity. No evidence for genetic structure was observed for the historical Spanish imperial eagle population, suggesting that the current pattern of structure is the direct consequence of population fragmentation. Temporal fluctuations in mitochondrial and microsatellite allelic frequencies were found between the historical and the current population as well as for each pairwise comparison between historical and current Centro and historical and current Parque Nacional de Doñana nuclei. Our results indicate an ancestral panmictic situation for the species that management policies should aim to restore. A historical analysis like the one taken here provides the baseline upon which the relative role of recent drift in shaping current genetic patterns in endangered species can be evaluated and this knowledge is used to guide conservation actions. [source]


Human population genetic diversity as a function of SNP type from HapMap data

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 3 2010
Seymour Garte
Data from the international HapMap project were mined to determine if the degree of genetic differentiation (Fst) is dependent on single nucleotide polymorphism (SNP) category. The Fst statistic was evaluated across all SNPs for each of 30 genes and for each of five chromosomes. A consistent decrease in diversity between Europeans and Africans was seen for nonsynonymous coding region SNPs compared to the three other SNP categories: synonymous SNPs, UTR, and intronic SNPs. This suggests an effect of balancing selection in reducing interpopulation genetic diversity at sites that would be expected to influence phenotype and therefore be subject to selection. This result is inconsistent with the concept of large population specific genetic differences that could have applications in "racialized medicine." Am. J. Hum. Biol. 2010. © 2009 Wiley-Liss, Inc. [source]


Fitness and genetic variation of Viola calaminaria, an endemic metallophyte: implications of population structure and history

PLANT BIOLOGY, Issue 6 2008
J.-P. Bizoux
Abstract We investigated variations in genetic diversity and plant fitness in a rare endemic metallophyte of calamine soils, Viola calaminaria, in relation to population size, population connectivity and population history in order to evaluate and discuss potential conservation strategies for the species. Mean population genetic diversity (Hs = 0.25) of V. calaminaria was similar to endemic non-metallophyte taxa. Twenty-one per cent of the genetic variation was partitioned among populations and a low (9%) but significant differentiation was found among geographical regions. Our results did not support the hypothesis that the acquisition of metal tolerance may result in reduced genetic diversity, and suggested that strict metallophytes do not exhibit higher inter-population differentiation resulting from scattered habitats. There were no relationships between population genetic diversity and population size. Significant correlations were found between plant fitness and (i) population size and (ii) connectivity index. Recently-founded populations exhibited the same level of genetic diversity as ancient populations and also possessed higher plant fitness. There was no indication of strong founder effects in recently-established populations. The results suggest that the creation of habitats through human activities could provide new opportunities for conservation of this species. [source]