Population Fluctuations (population + fluctuation)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Population fluctuations, power laws and mixtures of lognormal distributions

ECOLOGY LETTERS, Issue 1 2001
A.P. Allen
A number of investigators have invoked a cascading local interaction model to account for power-law-distributed fluctuations in ecological variables. Invoking such a model requires that species be tightly coupled, and that local interactions among species influence ecosystem dynamics over a broad range of scales. Here we reanalyse bird population data used by Keitt & Stanley (1998, Dynamics of North American breeding bird populations. Nature, 393, 257,260) to support a cascading local interaction model. We find that the power law they report can be attributed to mixing of lognormal distributions. More tentatively, we propose that mixing of distributions accounts for other empirical power laws reported in the ecological literature. [source]


Effect of weather factors on populations of Helicoverpa armigera moths at cotton-based agro-ecological sites

ENTOMOLOGICAL RESEARCH, Issue 1 2009
Ghulam Mustafa AHEER
Abstract Pheromone trapping was used to monitor populations of the moth Helicoverpa armigera at five cotton-based agro-ecological sites , river, vegetable, orchard, forest and clean cultivation (areas under only cotton cultivation) , in the Bahawalpur district, Pakistan. Three locations at each site were chosen and three pheromone traps at each location were installed in cotton fields. Moth catches were recorded at 15,20 day intervals from 24 October 2004 to 19 December 2006. In 2004, the river sites showed the maximum trapped population of H. armigera (0.22/trap) followed by 0.165 per trap at the vegetable sites. Orchard, clean cultivation and forest sites had zero moth catches. In 2005, the river sites again showed the highest trapped population (0.57/trap), followed by clean cultivation (0.45/trap), vegetable (0.44/trap), orchard (0.40/trap) and forest (0.29/trap). The moths appeared during July to December and March to May. In 2006, sites showed non-significant difference, with a population range of 0.47 to 0.97 moths per trap. On average, river sites peaked at 0.49 per trap, followed by vegetable (0.38), clean cultivation (0.47), orchard (0.35) and forest (0.25) sites. The peak was observed on 3 April 2006, and moths appeared during February to July and October to December. The minimum temperature in river, forest and clean cultivation sites; the maximum temperature in orchard sites; and the average temperature in river, orchard, forest and clean cultivation sites showed significant positive correlations with trapped moth populations. Relative humidity showed significant negative correlation with population at the orchard sites in 2005. All weather factors during 2004 and 2006 showed non-significant correlations with the moth populations. No model was found to be best fit by multiple linear regression analysis; however, relative humidity, minimum temperature, maximum temperature, minimum temperature and maximum temperature contributed 8.40, 10.23, 2.43, 4.53 and 2.53% to the population fluctuation of the moth at river, vegetable, orchard, forest and clean cultivation sites, respectively. [source]


Management of Fruit Flies (Diptera: Tephritidae) of the Most Perishable Fruits

ENTOMOLOGICAL RESEARCH, Issue 2 2005
Muhammad Ahsan KHAN
ABSTRACT We investigated to minimize the dependency on the use of chemicals and thus develop safe and environmental friendly control program for the most perishable fruits i.e., apple,,ber', guava and mango. Our findings on the composition of fruit fly species reveal that Bactrocera dorsalis was dominant on apple (33.96% existence), Corpomya incompleta on,ber'(51.91% existence) and Bactrocera zonata on guava (49.62% existence) and mango (74.66% existence). The correlation between population and infestation percentage was non-significant in apple orchards, whereas positive and highly significant in between population and infestation, as well as on the cumulative basis in,ber', guava and mango orchards during 1998-1999. Hoeing, baiting and methyl eugenol were statistically equal resulting about 77% decrease in infestation. The maximum control of 91.68% was observed where all four-control operations including Dipterex® were integrated together. Weather factors, when computed together, had maximum effect on population fluctuation and infestation with rainfall contributing the major role. For guava fruits, the months of August (14.06A individuals/trap/day) and September (13.81A individuals/trap/day) were important, resulting in maximum infestation percentage of 10.76 to 14.74%, respectively. [source]


Distinguishing between the nests of sympatric chimpanzees and gorillas

JOURNAL OF APPLIED ECOLOGY, Issue 2 2007
CRICKETTE SANZ
Summary 1Our current inability to estimate precisely the population sizes of chimpanzees and gorillas across much of the Congo Basin has been detrimental to the development of conservation strategies for the preservation of these endangered apes. Systematic counts of nests are currently the most commonly used method to estimate ape abundance, but distinguishing between the nests of sympatric chimpanzees and gorillas has proven to be an enduring obstacle to estimating species-specific abundance. In general, the builder of more than 75% of nests recorded during surveys is undetermined. We hypothesized that sleeping habits and nest building patterns would allow us to differentiate between the nests of these apes. 2We constructed a predictive model using stepwise discriminant function analysis to determine characteristics that accurately distinguished between chimpanzee and gorilla nests. We analysed 13 variables associated with 3425 ape nests from three independent surveys conducted in the Goualougo Triangle of the Nouabalé-Ndoki National Park, Republic of Congo. 3The model correctly classified more than 90% of nests in our validation subsample. Nest height, nest type, forest type and understorey closure were identified as important variables for distinguishing between chimpanzee and gorilla nests at this site. Attributing nests to either species increased the precision of resulting density estimates, which enhanced the statistical power to detect trends in population fluctuation. 4Although specific variables may differ between study sites, we have demonstrated that predictive models to distinguish between the nests of sympatric chimpanzee and gorillas provide a promising approach to improving the quality of ape survey data. 5Synthesis and applications. Our study introduces an innovative solution to the dilemma of discriminating between the nests of sympatric chimpanzees and gorillas, which increases the specificity and precision of resulting ape abundance estimates. There is an urgent need to improve methods to evaluate and monitor remaining ape populations across western and central Africa that are experiencing the imminent threats of emergent diseases, poaching and expanding human development. Increasing the quality of density estimates from field survey data will aid in the development of local conservation initiatives, national strategies and international policies on behalf of remaining ape populations. [source]


Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica

PLANT PATHOLOGY, Issue 4 2003
S. Verdejo-Lucas
The effect of Pochonia chlamydosporia, a facultative fungal parasite of nematode eggs, alone or in combination with oxamyl was evaluated in a double-cropping system of lettuce and tomato in unheated plastic houses infested with Meloidogyne javanica at two sites for two consecutive growing seasons. An additional treatment of methyl bromide fumigation was included to compare crop yield in nematode-free vs. nematode-infested soil. Final population densities, reproductive rate, root gall rating, and egg production were determined after each crop. Pochonia chlamydosporia was isolated from nematode eggs up to nine months after application to soil. The fungus survived in the rhizosphere for the entire growing season at one site, but only at low densities. Final population densities of M. javanica decreased after cultivation of lettuce and increased after tomato, and this pattern of population fluctuation was unaffected by treatment, experiment or site. The reproductive rate on lettuce was equal to or below 1, and it was similar among treatments in both experiments at both sites. Eggs were not found on lettuce roots. On tomato, the reproductive rate in the fungus + oxamyl treatment was significantly lower (P < 0·05) than other treatments in experiment 1 at both sites. Fungus + oxamyl consistently reduced root gall ratings on tomato in all cases, but numbers of eggs per g root varied depending on treatment. Methyl bromide-treated plots remained free of M. javanica at the end of the 2-year study. [source]


Variation in the relationship between numbers of breeding pairs and woodland area for passerines in fragmented habitat

ECOGRAPHY, Issue 1 2000
P. E. Bellamy
Species may differ in the relationship between the numbers of breeding pairs present and woodland area, because the proportion of a wood that forms suitable habitat will vary with woodland size. In this paper, we examine the pattern of variation in abundance with woodland area for eight breeding bird species, and also show how this pattern varied between years. During 1990-1997, we made annual censuses of 53,160 woods, of up to 10 ha in size, and fitted a power function to describe the relationships between numbers of breeding pairs and woodland area. Seven of the eight species, blackbird Turdus merula, dunnock Prunella modularis, wren Troglodytes troglodytes, great tit Parus major, chaffinch Fringilla coelebs, robin Erithacus rubecula and blue tit Parus caeruleus showed a pattern of proportionally higher numbers in smaller woods. Only long-tailed tit Aegithalos caudatus occurred in proportionally higher numbers in larger woods. Blackbird and dunnock showed a trend towards lower numbers in large woods during years with low regional population levels; for these species large woods may provide sub-optimal habitat. Great tit, blue tit, chaffinch and robin showed the opposite trend, towards lower numbers in small woods during years with low regional population levels; for these species small woods may provide sub-optimal habitat. Wren and long-tailed tit, which also showed large annual population fluctuations, showed no change in distribution with regional population level. In great tit and chaffinch, the distribution of pairs in any one year may have been influenced by site fidelity producing a lag in the response associated with regional population levels. [source]


Seasonality and the dynamics of infectious diseases

ECOLOGY LETTERS, Issue 4 2006
Sonia Altizer
Abstract Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host,pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite,host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions. [source]


ADAPTIVE CHANGE IN THE RESOURCE-EXPLOITATION TRAITS OF A GENERALIST CONSUMER: THE CEOLUTION AND COEXISTENCE OF GENERALISTS AND SPECIALISTS

EVOLUTION, Issue 3 2006
Peter A. Abrams
Abstract Mathematical models of consumer-resource systems are used to explore the evolution of traits related to resource acquisition in a generalist consumer species that is capable of exploiting two resources. The analysis focuses on whether evolution of traits determining the capture rates of two resources by a consumer species produce one generalist, two specialists, or all three types, when all types are characterized by a common fitness function. In systems with a stable equilibrium, evolution produces one generalist or two specialists, depending on the second derivative of the trade-off relationship. When there are sustained population fluctuations, the nature of the trade-off between the consumer's capture rates of the two resources still plays a key role in determining the evolutionary outcome. If the trade-off is described by a choice variable between zero and one that is raised to a power n, polymorphic states are possible when n > 1, which implies a positive second derivative of the curve. These states are either dimorphism, with two relatively specialized consumer types, or trimorphism, with a single generalist type and two specialists. Both endogenously driven consumer-resource cycles, and fluctuations driven by an environmental variable affecting resource growth are considered. Trimorphic evolutionary outcomes are relatively common in the case of endogenous cycles. In contrast to a previous study, these trimorphisms can often evolve even when new lineages are constrained to have phenotypes very similar to existing lineages. Exogenous cycles driven by environmental variation in resource growth rates appear to be much less likely to produce a mixture of generalists and specialists than are endogenous consumer-resource cycles. [source]


Effects of climate on population fluctuations of ibex

GLOBAL CHANGE BIOLOGY, Issue 2 2008
VIDAR GRØTAN
Abstract Predicting the effects of the expected changes in climate on the dynamics of populations require that critical periods for climate-induced changes in population size are identified. Based on time series analyses of 26 Swiss ibex (Capra ibex) populations, we show that variation in winter climate affected the annual changes in population size of most of the populations after accounting for the effects of density dependence and demographic stochasticity. In addition, precipitation during early summer also influenced the population fluctuations. This suggests that the major influences of climate on ibex population dynamics operated either through loss of individuals during winter or early summer, or through an effect on fecundity. However, spatial covariation in these climate variables was not able to synchronize the population fluctuations of ibex over larger distances, probably due to large spatial heterogeneity in the effects of single climate variables on different populations. Such spatial variation in the influence of the same climate variable on the local population dynamics suggests that predictions of influences of climate change need to account for local differences in population dynamical responses to climatic conditions. [source]


Fluctuations of Vanessa cardui butterfly abundance with El Niño and Pacific Decadal Oscillation climatic variables

GLOBAL CHANGE BIOLOGY, Issue 5 2003
ROBERT VANDENBOSCH
Abstract Annual 4th of July Butterfly Count data spanning more than 20 years are examined to explore Vanessa cardui (Painted Lady) population fluctuations with ENSO (El Niño) and Pacific Decadal Oscillation (PDO) indices. California, Colorado and Nebraska censuses exhibit a strong positive correlation with the strong El Niño events of 1982,1983 and 1997,1998 and the weaker event of 1991,1992. Regression analysis shows the population fluctuations are strongly coupled to climate variations on both short (El Niño) and longer (Pacific Decadal Oscillation) time scales. Recognizing the sensitivity to these time scales is important for predicting longer-term global climate change effects. [source]


Spatial and temporal variation in the relative contribution of density dependence, climate variation and migration to fluctuations in the size of great tit populations

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2009
Vidar Grøtan
Summary 1The aim of the present study is to model the stochastic variation in the size of five populations of great tit Parus major in the Netherlands, using a combination of individual-based demographic data and time series of population fluctuations. We will examine relative contribution of density-dependent effects, and variation in climate and winter food on local dynamics as well as on number of immigrants. 2Annual changes in population size were strongly affected by temporal variation in number of recruits produced locally as well as by the number of immigrants. The number of individuals recruited from one breeding season to the next was mainly determined by the population size in year t, the beech crop index (BCI) in year t and the temperature during March,April in year t. The number of immigrating females in year t + 1 was also explained by the number of females present in the population in year t, the BCI in autumn year t and the temperature during April,May in year t. 3By comparing predictions of the population model with the recorded number of females, the simultaneous modelling of local recruitment and immigration explained a large proportion of the annual variation in recorded population growth rates. 4Environmental stochasticity especially caused by spring temperature and BCI did in general contribute more to annual fluctuations in population size than density-dependent effects. Similar effects of climate on local recruitment and immigration also caused covariation in temporal fluctuations of immigration and local production of recruits. 5The effects of various variables in explaining fluctuations in population size were not independent, and the combined effect of the variables were generally non-additive. Thus, the effects of variables causing fluctuations in population size should not be considered separately because the total effect will be influenced by covariances among the explanatory variables. 6Our results show that fluctuations in the environment affect local recruitment as well as annual fluctuations in the number of immigrants. This effect of environment on the interchange of individuals among populations is important for predicting effects of global climate change on the pattern of population fluctuations. [source]


Overcompensatory population dynamic responses to environmental stochasticity

JOURNAL OF ANIMAL ECOLOGY, Issue 6 2008
James C. Bull
Summary 1To quantify the interactions between density-dependent, population regulation and density-independent limitation, we studied the time-series dynamics of an experimental laboratory insect microcosm system in which both environmental noise and resource limitation were manipulated. 2A hierarchical Bayesian state-space approach is presented through which it is feasible to capture all sources of uncertainty, including observation error to accurately quantify the density dependence operating on the dynamics. 3The regulatory processes underpinning the dynamics of two different bruchid beetles (Callosobruchus maculatus and Callosobruchus chinensis) are principally determined by environmental conditions, with fluctuations in abundance explained in terms of changes in overcompensatory dynamics and stochastic processes. 4A general, stochastic population model is developed to explore the link between abundance fluctuations and the interaction between density dependence and noise. Taking account of time-lags in population regulation can substantially increase predicted population fluctuations resulting from underlying noise processes. [source]


The anatomy of predator,prey dynamics in a changing climate

JOURNAL OF ANIMAL ECOLOGY, Issue 6 2007
CHRISTOPHER C. WILMERS
Summary 1Humans are increasingly influencing global climate and regional predator assemblages, yet a mechanistic understanding of how climate and predation interact to affect fluctuations in prey populations is currently lacking. 2Here we develop a modelling framework to explore the effects of different predation strategies on the response of age-structured prey populations to a changing climate. 3We show that predation acts in opposition to temporal correlation in climatic conditions to suppress prey population fluctuations. 4Ambush predators such as lions are shown to be more effective at suppressing fluctuations in their prey than cursorial predators such as wolves, which chase down prey over long distances, because they are more effective predators on prime-aged adults. 5We model climate as a Markov process and explore the consequences of future changes in climatic autocorrelation for population dynamics. We show that the presence of healthy predator populations will be particularly important in dampening prey population fluctuations if temporal correlation in climatic conditions increases in the future. [source]


Multi-annual spatial and numeric dynamics of the white-headed duck Oxyura leucocephala in southern Europe: seasonality, density dependence and climatic variability

JOURNAL OF ANIMAL ECOLOGY, Issue 6 2004
PABLO ALMARAZ
Summary 1A statistical model is developed for the globally threatened white-headed duck during its regional expansion throughout Spain from 1980 to 2000; the model estimates the relative intrinsic, climatic and stochastic effects on population fluctuations and spatial expansion on several time-scales. Facing the current lack of knowledge on the nature and consequences of regulation for waterfowl populations, this type of study seems timely. 2A measure of population density accounting for the spatial patchiness of the population was constructed for breeding and wintering counts. No relationship was found between spatial and numeric dynamics, which suggests different mechanisms for both dynamical patterns. 3Although a lagged non-linear climatic effect during the period of chick rearing enhanced numeric brood recruitment through a cohort effect, in the short term brood production appeared to decrease with increasing population density, despite a long-term exponential numeric growth. 4Both wintering population density and rainfall during post-nuptial moult exerted a positive effect on subsequent spatial expansion during breeding, which suggest a major role for social interactions during wintering and wetlands availability on spatial dynamics. 5Altogether, the results suggest that seasonality, density-dependence and climatic forcing are all major processes in the spatio-temporal dynamics of the white-headed duck. Ignoring the relative biotic and abiotic effects and their temporal scale of interaction on population dynamics might thus yield misleading conclusions on the factors affecting the short- and long-term abundance of waterfowl populations. [source]


Diversity,stability relationships in multitrophic systems: an empirical exploration

JOURNAL OF ANIMAL ECOLOGY, Issue 5 2003
Priyanga Amarasekare
Summary 1The relationship between diversity and stability is crucial in understanding the dynamics of multitrophic interactions. There are two basic hypotheses about the causal link between diversity and stability. The first is that fluctuations in resource abundance allow consumer coexistence, thus increasing diversity at the consumer trophic level (resource variability hypothesis). The second is that interactions between coexisting consumer species reduce consumer efficiency and dampen population fluctuations, thus increasing consumer,resource stability (consumer efficiency hypothesis). 2The two hypotheses lead to three comparative predictions: (i) fluctuations should be greater (resource variability) or smaller (consumer efficiency) in resource populations with coexisting consumer species, compared to those invaded only by the consumer species superior at resource exploitation; (ii) average resource abundance should be greater (resource variability) or smaller (consumer efficiency) in resource populations with greater fluctuations; and (iii) removal of the consumer species inferior at resource exploitation should increase or not affect resource population fluctuations (resource variability), or always increase them (consumer efficiency). 3I tested these predictions with data from a host,multiparasitoid community: the harlequin bug (Murgantia histrionica) and two specialist parasitoids (Trissolcus murgantiae and Ooencyrtus johnsonii) that attack the bug's eggs. 4Local host populations with coexisting parasitoids exhibited smaller fluctuations and greater average abundance compared to those with just Trissolcus, the species superior at host exploitation. Local populations that lost Ooencyrtus, the species inferior at host exploitation, exhibited an increase in host population fluctuations compared to those that did not. 5The results contradict the expectations of the resource variability hypothesis, suggesting that host population fluctuations are unlikely to be driving parasitoid coexistence. They are consistent with the consumer efficiency hypothesis, that interactions between coexisting parasitoid species dampens host population fluctuations. I discuss the implications of these results as well as possible caveats. [source]


Seasonal abundance, spatial distribution and sampling indices of thrip populations on cotton; a 4-year survey from central Greece

JOURNAL OF APPLIED ENTOMOLOGY, Issue 7-8 2002
P. N. Deligeorgidis
Thus, in a cotton field (1.1 ha) in central Greece, 45 leaves were collected (one leaf per cotton plant) at 10-day intervals from May to September, for four consecutive growing seasons (1995,98). Five species of thrips were found: Frankliniella intonsa was the most abundant species followed by Thrips angusticeps, Thrips tabaci, Frankliniella occidentalis and Aeolothrips intermedius. Although considerable differences were observed in the population fluctuations among species, the highest population densities, for all species found, were recorded in July and August. As indicated by Taylor's power law estimates, all species presented aggregated distribution among sampling units. As this type of spatial pattern indicates, the accuracy obtained in estimating mean population density increased with the increase of the mean. Furthermore, the increase of the mean caused an exponential decrease in sample size. However, the precision level is acceptable only in high mean values, while at the same time the benefit from an increase in sample size is of no practical value. [source]


Rainfall effects on rare annual plants

JOURNAL OF ECOLOGY, Issue 4 2008
Jonathan M. Levine
Summary 1Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood. 2We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future. 3Species showed 9 to 100-fold between-year variation in plant density over the 5,12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants. 4Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect. 5Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response experiments indicated that variation in germination has the same potential as the seeds produced per germinant to drive variation in population growth rates, but only the former was clearly related to rainfall. 6Synthesis. Our work suggests that future changes in the timing and temperatures associated with the first major rains, acting through germination, may more strongly affect population persistence than changes in season-long rainfall. [source]


Population dynamics of cereal aphids: influence of a shared predator and weather

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 1 2009
T. W. Leslie
Abstract 1,Aphid populations may show strong year-to-year fluctuations, but questions remain regarding the dominance of factors that cause this variation, especially the role of natural enemies. To better understand the dynamics of aphid species that occur as pests in cereals, we investigated the relative influence of top-down control by a predator and weather (temperature and precipitation) on population fluctuations of three cereal aphid species. 2,From 1987 to 2005, populations of Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi in insecticide-free stands of winter wheat were monitored in the Praha-Ruzyné region of the Czech Republic. Densities of an aphidophagous predator, the ladybeetle Coccinella septempunctata, were recorded from an overwintering site in the landscape. Weather was quantified using historical records. 3,A significant bottom-up effect of densities of aphids on those of C. septempunctata was found, but evidence of direct top-down regulation of aphids by C. septempunctata was only significant in the case of R. padi. There was no significant periodicity in the dynamics of the aphid or C. septempunctata, suggesting that there was no clear predator-prey cycle. Combinations of C. septempunctata and weather variables could be used to explain M. dirhodum and R. padi per capita rate of change. There were also indications that weather directly affected peak density of M. dirhodum. 4,We conclude that regional estimates of C. septempunctata densities are not sufficient to determine whether aphid population dynamics are driven by predator,prey interactions. Feasibility of time series analysis as an investigative tool in aphid population dynamics studies is discussed. [source]


Polymorphic microsatellite DNA markers for the Patagonian squid, Loligo gahi (Cephalopoda)

MOLECULAR ECOLOGY RESOURCES, Issue 3 2002
P. W. Shaw
Abstract Squid populations are being put under rapidly increasing commercial fishing pressure worldwide. The same species are known to be susceptible to extreme population fluctuations, so detailed knowledge of population substructuring and genetic diversity is essential for rational management. We present a set of microsatellite DNA loci suitable for population genetic analysis of Loligo gahi, the squid species subject to the most detailed monitoring and fishery control (around the Falkland Islands), with the future aim of generating management-related information to aid conservation of this valuable natural resource. [source]


Strength of asymmetric competition between predators in food webs ruled by fluctuating prey: the case of foxes in tundra

OIKOS, Issue 1 2010
John-André Henden
In food webs heavily influenced by multi-annual population fluctuations of key herbivores, predator species may differ in their functional and numerical responses as well as their competitive ability. Focusing on red and arctic fox in tundra with cyclic populations of rodents as key prey, we develop a model to predict how population dynamics of a dominant and versatile predator (red fox) impacted long-term growth rate of a subdominant and less versatile predator (arctic fox). We compare three realistic scenarios of red fox performance: (1) a numerical response scenario where red fox acted as a resident rodent specialist exhibiting population cycles lagging one year after the rodent cycle, (2) an aggregative response scenario where red fox shifted between tundra and a nearby ecosystem (i.e. boreal forest) so as to track rodent peaks in tundra without delay, and (3) a constant subsidy scenario in which the red fox population was stabilized at the same mean density as in the other two scenarios. For all three scenarios it is assumed that the arctic fox responded numerically as a rodent specialist and that the mechanisms of competition is of a interference type for space, in which the arctic fox is excluded from the most resource rich patches in tundra. Arctic fox is impacted most by the constant subsidy scenario and least by the numerical response scenario. The differential effects of the scenarios stemmed from cyclic phase-dependent sensitivity to competition mediated by changes in temporal mean and variance of available prey to the subdominant predator. A general implication from our result is that external resource subsidies (prey or habitats), monopolized by the dominant competitor, can significantly reduce the likelihood for co-existence within the predator guild. In terms of conservation of vulnerable arctic fox populations this means that the likelihood of extinction increases with increasing amount of subsidies (e.g. carcasses of large herbivores or marine resources) in tundra and nearby forest areas, since it will act to both increase and stabilize populations of red fox. [source]


Can the cause of aggregation be inferred from species distributions?

OIKOS, Issue 1 2007
Astrid J.A. Van Teeffelen
Species distributions often show an aggregated pattern, which can be due to a number of endo- and exogenous factors. While autologistic models have been used for modelling such data with statistical rigour, little emphasis has been put on disentangling potential causes of aggregation. In this paper we ask whether it is possible to infer sources of aggregation in species distributions from a single set of occurrence data by comparing the performance of various autologistic models. We create simulated data sets, which show similar occupancy patterns, but differ in the process that causes the aggregation. We model the distribution of these data with various autologistic models, and show how the relative performance of the models is sensitive to the factor causing aggregation in the data. This information can be used when modelling real species data, where causes of aggregation are typically unknown. To illustrate, we use our approach to assess the potential causes of aggregation in data of seven bird species with contrasting statistical patterns. Our findings have important implications for conservation, as understanding the mechanisms that drive population fluctuations in space and time is critical for the development of effective management actions for long-term conservation. [source]


Can parasites synchronise the population fluctuations of sympatric tetraonids? ,examining some minimum conditions

OIKOS, Issue 3 2005
Per R. Holmstad
Sympatric populations of tetraonid birds tend to fluctuate in synchrony, at least on local scales. If shared parasites among sympatric populations of different tetraonid species are to operate as a local, synchronizing factor for population fluctuations at least two conditions should be met: i) the host species should share the same (or similar) parasite species, and ii) geographical location should contribute significantly more to the variation in the parasite species composition and abundance than differences among host species. We examined these conditions among subpopulations of sympatric willow ptarmigan and rock ptarmigan and found that host species shared a common pool of parasite species, and geographic location was more important than host species in determining parasite abundance across locations. There was no time lag between density oscillations in the two hosts, suggesting a symmetrical pattern of transmission and maintenance of parasites within habitats governed by the density of hosts and the environment. These findings are consistent with the idea that parasites may play a role in generating synchronous density fluctuations, but large scale experiments are needed to verify this hypothesis. [source]


Herbivory and Abiotic Factors Affect Population Dynamics of Arabidopsis thaliana in a Sand Dune Area

PLANT BIOLOGY, Issue 5 2005
A. Mosleh Arany
Abstract: Population dynamics of the annual plant Arabidopsis thaliana (L.) Heynh. were studied in a natural habitat of this species on the coastal dunes of the Netherlands. The main objective was to elucidate factors controlling population dynamics and the relative importance of factors affecting final population density. Permanent plots were established and plants were mapped to obtain data on survival and reproductive performance of each individual, with special attention to herbivore damage. In experimental plots we studied how watering, addition of nutrients, artificial disturbance, and natural herbivores affected survival and growth. Mortality was low during autumn and early winter and high at the time of stem elongation, between February and April. A key factor analysis showed a high correlation between mortality from February to April and total mortality. The specialist weevils Ceutorhyncus atomus and C. contractus (Curculionidae) were identified as the major insect herbivores on A. thaliana, reducing seed production by more than 40 %. These herbivores acted in a plant size-dependent manner, attacking a greater fraction of the fruits on large plants. While mortality rates were not affected by density, fecundity decreased with density, although the effect was small. Adding water reduced mortality in rosette and flowering plant stages. Soil disturbance did not increase seed germination, but did have a significant positive effect on survival of rosette and flowering plants. Seed production of A. thaliana populations varied greatly between years, leading to population fluctuations, with a small role for density-dependent fecundity and plant size-dependent herbivory. [source]


Environmental factors and population fluctuations of Akodon azarae (Muridae: Sigmodontinae) in central Argentina

AUSTRAL ECOLOGY, Issue 2 2009
VERÓNICA ANDREO
Abstract The aim of this work was to explore the relationship between population density of Akodon azarae (Muridae: Sigmodontinae) and climatic and environmental variables, and determine which of them are associated to within and among-year changes in rodent abundance in agro-ecosystems from south Córdoba, Argentina. The study was carried out in a rural area of central Argentina, from 1983 to 2003. Density was estimated as a relative density index (RDI). Temperature, precipitation and humidity were obtained from records of the National University of Rio Cuarto. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature were recorded from National Oceanic and Atmospheric Administration (1983,1998) and Landsat (1998,2003) imagery data sets. We performed simple correlations, multiple regressions and distributed lag analysis. Direct association of climatic and environmental variables with RDI was in general, low. The amount of variability in seasonal changes in density explained by climatic and environmental variables altogether varied from 10% to 70%. Seasonal population fluctuations were influenced by NDVI and rainfall with one and two seasons of delay. Autumn maximum density of the species was also associated with vegetation and rainfall of previous seasons. There also seemed to be an indirect influence of rainfall through vegetation given that we found a positive correlation between them. Results were consistent with basic aspects of the ecology of the species, such as its strong preference for highly covered areas, which provide food and protection from predators, likely increasing its reproductive success. Therefore, in the rural area central Argentina, A. azarae showed seasonal fluctuations with delayed influence of rainfall and vegetation and indirect effects of rainfall. [source]


Mammalian Densities in a Neotropical Wetland Subject to Extreme Climatic Events

BIOTROPICA, Issue 3 2010
Arnaud Léonard Jean Desbiez
ABSTRACT Effective management and conservation of an ecosystem requires information on species assemblages as well as reliable estimates of population sizes to plan, implement and evaluate management strategies. The Brazilian Pantanal is one of the world's largest freshwater wetlands and considered a priority landscape for wildlife conservation. It is subject to pluri-annual extreme dry and wet periods, which cause extreme flood and drought events, which strongly affect wildlife. Using the line-transect method, this study examined the distribution of densities and metabolic biomass of medium- to large-sized nonvolant mammals in forest, cerrado and floodplain landscapes, in an area with low anthropogenic influence, in the central area of the Brazilian Pantanal during a prolonged drought. Comparisons with a previous survey conducted during years of average rainfall in part of the study area suggest that population fluctuations of certain species are closely associated with water due to the drought. Results from this study showed that mammal assemblages varied between landscapes. Forested landscapes have the highest densities of mammals and are the most important in terms of relative energy consumption. In addition, at the time of the study, frugivores were found to have higher energy consumption than browser/grazers across the three landscapes; most fruits are produced in forested areas stressing their importance. By converting forested landscapes into grasslands, the intensification of ranching practices seriously threatens biodiversity and ecological processes in the region. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp [source]