Population Divergence (population + divergence)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Population Divergence

  • adaptive population divergence

  • Terms modified by Population Divergence

  • population divergence time

  • Selected Abstracts


    ESTIMATING A GEOGRAPHICALLY EXPLICIT MODEL OF POPULATION DIVERGENCE

    EVOLUTION, Issue 3 2007
    L. Lacey Knowles
    Patterns of genetic variation can provide valuable insights for deciphering the relative roles of different evolutionary processes in species differentiation. However, population-genetic models for studying divergence in geographically structured species are generally lacking. Since these are the biogeographic settings where genetic drift is expected to predominate, not only are population-genetic tests of hypotheses in geographically structured species constrained, but generalizations about the evolutionary processes that promote species divergence may also be potentially biased. Here we estimate a population-divergence model in montane grasshoppers from the sky islands of the Rocky Mountains. Because this region was directly impacted by Pleistocene glaciation, both the displacement into glacial refugia and recolonization of montane habitats may contribute to differentiation. Building on the tradition of using information from the genealogical relationships of alleles to infer the geography of divergence, here the additional consideration of the process of gene-lineage sorting is used to obtain a quantitative estimate of population relationships and historical associations (i.e., a population tree) from the gene trees of five anonymous nuclear loci and one mitochondrial locus in the broadly distributed species Melanoplus oregonensis. Three different approaches are used to estimate a model of population divergence; this comparison allows us to evaluate specific methodological assumptions that influence the estimated history of divergence. A model of population divergence was identified that significantly fits the data better compared to the other approaches, based on per-site likelihood scores of the multiple loci, and that provides clues about how divergence proceeded in M. oregonensis during the dynamic Pleistocene. Unlike the approaches that either considered only the most recent coalescence (i.e., information from a single individual per population) or did not consider the pattern of coalescence in the gene genealogies, the population-divergence model that best fits the data was estimated by considering the pattern of gene lineage coalescence across multiple individuals, as well as loci. These results indicate that sampling of multiple individuals per population is critical to obtaining an accurate estimate of the history of divergence so that the signal of common ancestry can be separated from the confounding influence of gene flow,even though estimates suggest that gene flow is not a predominant factor structuring patterns of genetic variation across these sky island populations. They also suggest that the gene genealogies contain information about population relationships, despite the lack of complete sorting of gene lineages. What emerges from the analyses is a model of population divergence that incorporates both contemporary distributions and historical associations, and shows a latitudinal and regional structuring of populations reminiscent of population displacements into multiple glacial refugia. Because the population-divergence model itself is built upon the specific events shaping the history of M. oregonensis, it provides a framework for estimating additional population-genetic parameters relevant to understanding the processes governing differentiation in geographically structured species and avoids the problems of relying on overly simplified and inaccurate divergence models. The utility of these approaches, as well as the caveats and future improvements, for estimating population relationships and historical associations relevant to genetic analyses of geographically structured species are discussed. [source]


    PERSPECTIVE: GENE DIVERGENCE, POPULATION DIVERGENCE, AND THE VARIANCE IN COALESCENCE TIME IN PHYLOGEOGRAPHIC STUDIES

    EVOLUTION, Issue 6 2000
    ScottV.
    Abstract Molecular methods as applied to the biogeography of single species (phylogeography) or multiple codistributed species (comparative phylogeography) have been productively and extensively used to elucidate common historical features in the diversification of the Earth's biota. However, only recently have methods for estimating population divergence times or their confidence limits while taking into account the critical effects of genetic polymorphism in ancestral species become available, and earlier methods for doing so are underutilized. We review models that address the crucial distinction between the gene divergence, the parameter that is typically recovered in molecular phylogeographic studies, and the population divergence, which is in most cases the parameter of interest and will almost always postdate the gene divergence. Assuming that population sizes of ancestral species are distributed similarly to those of extant species, we show that phylogeographic studies in vertebrates suggest that divergence of alleles in ancestral species can comprise from less than 10% to over 50% of the total divergence between sister species, suggesting that the problem of ancestral polymorphism in dating population divergence can be substantial. The variance in the number of substitutions (among loci for a given species or among species for a given gene) resulting from the stochastic nature of DNA change is generally smaller than the variance due to substitutions along allelic lines whose coalescence times vary due to genetic drift in the ancestral population. Whereas the former variance can be reduced by further DNA sequencing at a single locus, the latter cannot. Contrary to phylogeographic intuition, dating population divergence times when allelic lines have achieved reciprocal monophyly is in some ways more challenging than when allelic lines have not achieved monophyly, because in the former case critical data on ancestral population size provided by residual ancestral polymorphism is lost. In the former case differences in coalescence time between species pairs can in principle be explained entirely by differences in ancestral population size without resorting to explanations involving differences in divergence time. Furthermore, the confidence limits on population divergence times are severely underestimated when those for number of substitutions per site in the DNA sequences examined are used as a proxy. This uncertainty highlights the importance of multilocus data in estimating population divergence times; multilocus data can in principle distinguish differences in coalescence time (T) resulting from differences in population divergence time and differences in T due to differences in ancestral population sizes and will reduce the confidence limits on the estimates. We analyze the contribution of ancestral population size (,) to T and the effect of uncertainty in , on estimates of population divergence (,) for single loci under reciprocal monophyly using a simple Bayesian extension of Takahata and Satta's and Yang's recent coalescent methods. The confidence limits on , decrease when the range over which ancestral population size , is assumed to be distributed decreases and when increases; they generally exclude zero when /(4Ne) > 1. We also apply a maximum-likelihood method to several single and multilocus data sets. With multilocus data, the criterion for excluding = 0 is roughly that l/(4Ne)> 1, where l is the number of loci. Our analyses corroborate recent suggestions that increasing the number of loci is critical to decreasing the uncertainty in estimates of population divergence time. [source]


    Influence of habitat discontinuity, geographical distance, and oceanography on fine-scale population genetic structure of copper rockfish (Sebastes caurinus)

    MOLECULAR ECOLOGY, Issue 13 2008
    M. L. JOHANSSON
    Abstract The copper rockfish is a benthic, nonmigratory, temperate rocky reef marine species with pelagic larvae and juveniles. A previous range-wide study of the population-genetic structure of copper rockfish revealed a pattern consistent with isolation-by-distance. This could arise from an intrinsically limited dispersal capability in the species or from regularly,spaced extrinsic barriers that restrict gene flow (offshore jets that advect larvae offshore and/or habitat patchiness). Tissue samples were collected along the West Coast of the contiguous USA between Neah Bay, WA and San Diego, CA, with dense sampling along Oregon. At the whole-coast scale (~2200 km), significant population subdivision (FST = 0.0042), and a significant correlation between genetic and geographical distance were observed based on 11 microsatellite DNA loci. Population divergence was also significant among Oregon collections (~450 km, FST = 0.001). Hierarchical amova identified a weak but significant 130-km habitat break as a possible barrier to gene flow within Oregon, across which we estimated that dispersal (Nem) is half that of the coast-wide average. However, individual-based Bayesian analyses failed to identify more than a single population along the Oregon coast. In addition, no correlation between pairwise population genetic and geographical distances was detected at this scale. The offshore jet at Cape Blanco was not a significant barrier to gene flow in this species. These findings are consistent with low larval dispersal distances calculated in previous studies on this species, support a mesoscale dispersal model, and highlight the importance of continuity of habitat and adult population size in maintaining gene flow. [source]


    Population divergence in the amphicarpic species Amphicarpaea edgeworthii Benth. (Fabaceae): microsatellite markers and leaf morphology

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009
    ZHONG-CHENG LIANG
    Comparative analyses of the genetic differentiation in microsatellite markers (FST) and leaf morphology characters (QST) of Amphicarpaea edgeworthii Benth. were conducted to gain insight into the roles of random processes and natural selection in the population divergence. Simple sequence repeat analyses on 498 individuals of 19 natural populations demonstrate that a significant genetic differentiation occurs among populations (mean FST = 0.578), and A. edgeworthii is a highly self-fertilized species (mean selfing rate s = 0.989). The distribution pattern of genetic diversity in this species shows that central populations possess high genetic diversity (e.g. population WL with HE = 0.673 and population JG with HE = 0.663), whereas peripheral ones have a low HE as in population JD (0.011). The morphological divergence of leaf shape was estimated by the elliptical Fourier analysis on the data from 11 natural and four common garden populations. Leaf morphology analyses indicate the morphological divergence does not show strong correlation with the genetic differentiation (R = 0.260, P = 0.069). By comparing the 95% confidence interval of QST with that of FST, QST values for five out of 12 quantitative traits are significantly higher than the average FST value over eight microsatellite loci. The comparison of FST and QST suggests that two kinds of traits can be driven by different evolutionary forces, and the population divergence in leaf morphology is shaped by local selections. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 505,516. [source]


    The tri-trophic niche concept and adaptive radiation of phytophagous insects

    ECOLOGY LETTERS, Issue 12 2005
    Michael S. Singer
    Abstract A conceptual divide exists between ecological and evolutionary approaches to understanding adaptive radiation, although the phenomenon is inherently both ecological and evolutionary. This divide is evident in studies of phytophagous insects, a highly diverse group that has been frequently investigated with the implicit or explicit goal of understanding its diversity. Whereas ecological studies of phytophagous insects increasingly recognize the importance of tri-trophic interactions as determinants of niche dimensions such as host-plant associations, evolutionary studies typically neglect the third trophic level. Here we attempt to reconcile ecological and evolutionary approaches through the concept of the ecological niche. We specifically present a tri-trophic niche concept as a foil to the traditional bi-trophic niche concept for phytophagous insects. We argue that these niche concepts have different implications for understanding herbivore community structure, population divergence, and evolutionary diversification. To this end, we offer contrasting empirical predictions of bi- and tri-trophic niche concepts for patterns of community structure, the process of population divergence, and patterns of evolutionary diversification of phytophagous insects. [source]


    Geographic variation in the field response of male European pine sawflies, Neodiprion sertifer, to different pheromone stereoisomers and esters

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2000
    O. Anderbrant
    Abstract The European pine sawfly, Neodiprion sertifer (Geoffroy) (Hymenoptera: Diprionidae), is a widespread and economically important forest insect. The sex pheromone communication system of this species has been previously investigated in North America, Japan and Europe, with the acetate or propionate of the alcohol (2S,3S,7S)-3,7-dimethyl-2-pentadecanol (diprionol) shown to be the main pheromone component. In some locations, male attraction either increased or decreased by the addition of the (2S,3R,7R)-diprionyl acetate isomer. However, these studies were made with different batches of synthetic pheromones, with different types of traps and according to different procedures, so the observed differences might not reflect true geographic variation. Here we investigate the geographic pattern of male sawfly response by using identical chemicals, traps and experimental procedures at eight field sites ranging from Japan in the east to Canada in the west. We found an increased inhibitory effect of the (2S,3R,7R)-isomer from Japan and Siberia to Europe. At the eastern sites, increasing amounts of the (2S,3R,7R)-isomer up to and equal to the amount of the (2S,3S,7S )-isomer, did not influence the trap catch, whereas at sites in Europe, as little as 1% of the (2S,3R,7R)-isomer almost completely inhibited the attraction. The response of the North American population was intermediate. The only site in which the (2S,3R,7R)-isomer was essential for the attraction of males was in Siberia. A similar pattern was found for the (2S,3R,7S)-isomer. Both the acetate and the propionate form of the (2S,3S,7S)-isomer were attractive by themselves in Japan, Europe and North America, and neither the (2S,3R,7S)-isomer nor the (2S,3R,7R)-isomer alone were attractive, in the acetate or propionate form. We discuss the significance of our findings for the development of more efficient monitoring schemes and for the causes of population divergence and speciation in the European pine sawfly. [source]


    CLINES IN CUTICULAR HYDROCARBONS IN TWO DROSOPHILA SPECIES WITH INDEPENDENT POPULATION HISTORIES

    EVOLUTION, Issue 6 2010
    Francesca D. Frentiu
    We took a comparative approach utilizing clines to investigate the extent to which natural selection may have shaped population divergence in cuticular hydrocarbons (CHCs) that are also under sexual selection in Drosophila. We detected the presence of CHC clines along a latitudinal gradient on the east coast of Australia in two fly species with independent phylogenetic and population histories, suggesting adaptation to shared abiotic factors. For both species, significant associations were detected between clinal variation in CHCs and temperature variation along the gradient, suggesting temperature maxima as a candidate abiotic factor shaping CHC variation among populations. However, rainfall and humidity correlated with CHC variation to differing extents in the two species, suggesting that response to these abiotic factors may vary in a species-specific manner. Our results suggest that natural selection, in addition to sexual selection, plays a significant role in structuring among-population variation in sexually selected traits in Drosophila. [source]


    ESTIMATING A GEOGRAPHICALLY EXPLICIT MODEL OF POPULATION DIVERGENCE

    EVOLUTION, Issue 3 2007
    L. Lacey Knowles
    Patterns of genetic variation can provide valuable insights for deciphering the relative roles of different evolutionary processes in species differentiation. However, population-genetic models for studying divergence in geographically structured species are generally lacking. Since these are the biogeographic settings where genetic drift is expected to predominate, not only are population-genetic tests of hypotheses in geographically structured species constrained, but generalizations about the evolutionary processes that promote species divergence may also be potentially biased. Here we estimate a population-divergence model in montane grasshoppers from the sky islands of the Rocky Mountains. Because this region was directly impacted by Pleistocene glaciation, both the displacement into glacial refugia and recolonization of montane habitats may contribute to differentiation. Building on the tradition of using information from the genealogical relationships of alleles to infer the geography of divergence, here the additional consideration of the process of gene-lineage sorting is used to obtain a quantitative estimate of population relationships and historical associations (i.e., a population tree) from the gene trees of five anonymous nuclear loci and one mitochondrial locus in the broadly distributed species Melanoplus oregonensis. Three different approaches are used to estimate a model of population divergence; this comparison allows us to evaluate specific methodological assumptions that influence the estimated history of divergence. A model of population divergence was identified that significantly fits the data better compared to the other approaches, based on per-site likelihood scores of the multiple loci, and that provides clues about how divergence proceeded in M. oregonensis during the dynamic Pleistocene. Unlike the approaches that either considered only the most recent coalescence (i.e., information from a single individual per population) or did not consider the pattern of coalescence in the gene genealogies, the population-divergence model that best fits the data was estimated by considering the pattern of gene lineage coalescence across multiple individuals, as well as loci. These results indicate that sampling of multiple individuals per population is critical to obtaining an accurate estimate of the history of divergence so that the signal of common ancestry can be separated from the confounding influence of gene flow,even though estimates suggest that gene flow is not a predominant factor structuring patterns of genetic variation across these sky island populations. They also suggest that the gene genealogies contain information about population relationships, despite the lack of complete sorting of gene lineages. What emerges from the analyses is a model of population divergence that incorporates both contemporary distributions and historical associations, and shows a latitudinal and regional structuring of populations reminiscent of population displacements into multiple glacial refugia. Because the population-divergence model itself is built upon the specific events shaping the history of M. oregonensis, it provides a framework for estimating additional population-genetic parameters relevant to understanding the processes governing differentiation in geographically structured species and avoids the problems of relying on overly simplified and inaccurate divergence models. The utility of these approaches, as well as the caveats and future improvements, for estimating population relationships and historical associations relevant to genetic analyses of geographically structured species are discussed. [source]


    ADAPTIVE MIGRATORY DIVERGENCE AMONG SYMPATIRIC BROK CHARR POPULATIONS

    EVOLUTION, Issue 3 2005
    Dylan J. Fraser
    Abstract Ecological processes clearly contribute to population divergence, yet how they interact over complex life cycles remains poorly understood. Notably, the evolutionary consequences of migration between breeding and nonbreeding areas have received limited attention. We provide evidence for a negative association between interpopulation differences in migration (between breeding and feeding areas, as well as within each) and the amount of gene flow (m) among three brook charr (Salvelinus fontinalis) populations inhabitingMistassini Lake, Quebec, Canada. Individuals (n=1166) captured throughout lake feeding areas over two consecutive sampling years were genotyped (10 microsatellites) and assigned to one of the three populations. Interpopulation differences in migration were compared based on spatial distribution overlap, habitat selection, migration distance within feeding areas, and morphology. We observed a temporally stable, heterogeneous spatial distribution within feeding areas among populations, with the extent of spatial segregation related to differential habitat selection (represented by littoral zone substrate). Spatial segregation was lowest and gene flow highest (m=0.015) between two populations breeding in separate lake inflows. Segregation was highest and gene flow was lowest (mean m=0.007) between inflow populations and a third population breeding in the outflow. Compared to outflow migrants, inflow migrants showed longer migration distances within feeding areas(64,70 km vs. 22 km). After entering natal rivers to breed, inflow migrants also migrated longer distances (35,75 km) and at greater elevations (50,150 m) to breeding areas than outflow migrants (0,15 km; ,10,0 m). Accordingly, inflow migrants were more streamlined with longer caudal regions, traits known to improve swimming efficiency. There was no association between the geographic distance separating population pairs and the amount of gene flow they exchanged. Collectively, our results are consistent with the hypothesis that reduced gene flow between these brook charr populations results from divergent natural selection leading to interpopulation differences in migration. They also illustrate how phenotypic and genetic differentiation may arise over complex migratory life cycles. [source]


    MATHEMATICAL CONSEQUENCES OF THE GENEALOGICAL SPECIES CONCEPT

    EVOLUTION, Issue 8 2002
    Richard R. Hudson
    Abstract A genealogical species is defined as a basal group of organisms whose members are all more closely related to each other than they are to any organisms outside the group ("exclusivity'), and which contains no exclusive group within it. In practice, a pair of species is so defined when phylogenies of alleles from a sample of loci shows them to be reciprocally monophyletic at all or some specified fraction of the loci. We investigate the length of time it takes to attain this status when an ancestral population divides into two descendant populations of equal size with no gene exchange, and when genetic drift and mutation are the only evolutionary forces operating. The number of loci used has a substantial effect on the probability of observing reciprocal monophyly at different times after population separation, with very long times needed to observe complete reciprocal monophyly for a large number of loci. In contrast, the number of alleles sampled per locus has a relatively small effect on the probability of reciprocal monophyly. Because a single mitochondrial or chloroplast locus becomes reciprocally monophyletic much faster than does a single nuclear locus, it is not advisable to use mitochondrial and chloroplast DNA to recognize genealogical species for long periods after population divergence. Using a weaker criterion of assigning genealogical species status when more than 50% of sampled nuclear loci show reciprocal monophyly, genealogical species status depends much less on the number of sampled loci, and is attained at roughly 4,7 N generations after populations are isolated, where N is the historically effective population size of each descendant. If genealogical species status is defined as more than 95% of sampled nuclear loci showing reciprocal monophyly, this status is attained after roughly 9,12 N generations. [source]


    PERSPECTIVE: GENE DIVERGENCE, POPULATION DIVERGENCE, AND THE VARIANCE IN COALESCENCE TIME IN PHYLOGEOGRAPHIC STUDIES

    EVOLUTION, Issue 6 2000
    ScottV.
    Abstract Molecular methods as applied to the biogeography of single species (phylogeography) or multiple codistributed species (comparative phylogeography) have been productively and extensively used to elucidate common historical features in the diversification of the Earth's biota. However, only recently have methods for estimating population divergence times or their confidence limits while taking into account the critical effects of genetic polymorphism in ancestral species become available, and earlier methods for doing so are underutilized. We review models that address the crucial distinction between the gene divergence, the parameter that is typically recovered in molecular phylogeographic studies, and the population divergence, which is in most cases the parameter of interest and will almost always postdate the gene divergence. Assuming that population sizes of ancestral species are distributed similarly to those of extant species, we show that phylogeographic studies in vertebrates suggest that divergence of alleles in ancestral species can comprise from less than 10% to over 50% of the total divergence between sister species, suggesting that the problem of ancestral polymorphism in dating population divergence can be substantial. The variance in the number of substitutions (among loci for a given species or among species for a given gene) resulting from the stochastic nature of DNA change is generally smaller than the variance due to substitutions along allelic lines whose coalescence times vary due to genetic drift in the ancestral population. Whereas the former variance can be reduced by further DNA sequencing at a single locus, the latter cannot. Contrary to phylogeographic intuition, dating population divergence times when allelic lines have achieved reciprocal monophyly is in some ways more challenging than when allelic lines have not achieved monophyly, because in the former case critical data on ancestral population size provided by residual ancestral polymorphism is lost. In the former case differences in coalescence time between species pairs can in principle be explained entirely by differences in ancestral population size without resorting to explanations involving differences in divergence time. Furthermore, the confidence limits on population divergence times are severely underestimated when those for number of substitutions per site in the DNA sequences examined are used as a proxy. This uncertainty highlights the importance of multilocus data in estimating population divergence times; multilocus data can in principle distinguish differences in coalescence time (T) resulting from differences in population divergence time and differences in T due to differences in ancestral population sizes and will reduce the confidence limits on the estimates. We analyze the contribution of ancestral population size (,) to T and the effect of uncertainty in , on estimates of population divergence (,) for single loci under reciprocal monophyly using a simple Bayesian extension of Takahata and Satta's and Yang's recent coalescent methods. The confidence limits on , decrease when the range over which ancestral population size , is assumed to be distributed decreases and when increases; they generally exclude zero when /(4Ne) > 1. We also apply a maximum-likelihood method to several single and multilocus data sets. With multilocus data, the criterion for excluding = 0 is roughly that l/(4Ne)> 1, where l is the number of loci. Our analyses corroborate recent suggestions that increasing the number of loci is critical to decreasing the uncertainty in estimates of population divergence time. [source]


    THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH.

    EVOLUTION, Issue 6 2000

    Abstract Recent colonization of ecologically distinct areas in North America by the house finch (Carpodacus mexicanus) was accompanied by strong population divergence in sexual size dimorphism. Here we examined whether this divergence was produced by population differences in local selection pressures acting on each sex. In a long-term study of recently established populations in Alabama, Michigan, and Montana, we examined three selection episodes for each sex: selection for pairing success, overwinter survival, and within-season fecundity. Populations varied in intensity of these selection episodes, the contribution of each episode to the net selection, and in the targets of selection. Direction and intensity of selection strongly differed between sexes, and different selection episodes often favored opposite changes in morphological traits. In each population, current net selection for sexual dimorphism was highly concordant with observed sexual dimorphism,in each population, selection for dimorphism was the strongest on the most dimorphic traits. Strong directional selection on sexually dimorphic traits, and similar intensities of selection in both sexes, suggest that in each of the recently established populations, both males and females are far from their local fitness optimum, and that sexual dimorphism has arisen from adaptive responses in both sexes. Population differences in patterns of selection on dimorphism, combined with both low levels of ontogenetic integration in heritable sexually dimorphic traits and sexual dimorphism in growth patterns, may account for the close correspondence between dimorphism in selection and observed dimorphism in morphology across house finch populations. [source]


    SEXUAL DIMORPHISM IN RELATION TO CURRENT SELECTION IN THE HOUSE FINCH

    EVOLUTION, Issue 3 2000
    Alexander V. Badyaev
    Abstract., Sexual dimorphism is thought to have evolved in response to selection pressures that differ between males and females. Our aim in this study was to determine the role of current net selection in shaping and maintaining contemporary sexual dimorphism in a recently established population of the house finch (Carpodacus mexicanus) in Montana. We found strong differences between sexes in direction of selection on sexually dimorphic traits, significant heritabilities of these traits, and a close congruence between current selection and observed sexual dimorphism in Montana house finches. Strong directional selection on sexually dimorphic traits and similar intensities of selection in each sex suggested that sexual dimorphism arises from adaptive responses in males and females, with both sexes being far from their local fitness optimum. This pattern is expected when a recently established population experiences continuous immigration from ecologically distinct areas of a species range or as a result of widely fluctuating selection pressures, as found in our study. Strong and sexually dimorphic selection pressures on heritable morphological traits, in combination with low phenotypic and genetic covariation among these traits during growth, may have accounted for close congruence between current selection and observed sexual dimorphism in the house finch. This conclusion is consistent with the profound adaptive population divergence in sexual dimorphism that accompanied very successful colonization of most of the North America by the house finch over the last 50 years. [source]


    Parasites can cause selection against migrants following dispersal between environments

    FUNCTIONAL ECOLOGY, Issue 4 2010
    Andrew D. C. MacColl
    Summary 1.,The potential for selection against migrants to promote population divergence and speciation is well established in theory, yet there has been relatively little empirical work that has explicitly considered selection against migrants as a form of reproductive barrier, and its importance in the accumulation of reproductive isolation between populations has been overlooked until recently. 2.,Parasites often differ between environments and can be an important source of selection on hosts, yet their contribution to population divergence in general, and selection against migrants in particular, is poorly understood. 3.,Selection against migrants might be reduced if organisms escape parasitism when they disperse (natural enemy release). Alternatively, parasites could increase selection against migrants if, when they disperse, organisms encounter parasites to which they are poorly adapted. 4.,Here we test experimentally the contribution that parasites could make to selection against migrants in the adaptive radiation of three-spined sticklebacks. These fish have repeatedly colonized freshwater environments from marine ones, and this has repeatedly lead to rapid speciation. 5.,We use transplant experiments of lab-raised fish to simulate dispersal, and antihelminthic treatment to show that ancestral-type marine sticklebacks contract higher burdens of novel parasites when introduced to freshwater, than in saltwater, and suffer a growth cost as a direct result. 6.,Susceptibility to parasites and their detrimental effect is less in derived, freshwater fish from evolutionarily young populations, possibly as a result of selection for resistance. 7.,Our results support a role for parasites in selection against migrants and population diversification. They do not support the hypothesis of ,natural enemy release'. [source]


    Preliminary evidence for genetic heterogeneity of the goby (Sufflogobius bibarbatus) in the Benguela ecosystem

    JOURNAL OF APPLIED ICHTHYOLOGY, Issue 1 2010
    K. B. S. Gunawickrama
    Summary PCR-RFLP analysis of mitochondrial DNA (NADH-3/4 gene and the control region) of the Benguelan bearded goby Sufflogobius bibarbatus revealed weak, but significant genetic differentiation (overall FST = 0.137) that could not be predicted by hydrodynamics alone, thus warranting further investigations to understand the forces behind population divergence within an ecosystem having complex dynamics. [source]


    Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic,alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota)

    JOURNAL OF BIOGEOGRAPHY, Issue 8 2010
    József Geml
    Abstract Aim, We examined genetic structure and long-distance gene flow in two lichenized ascomycetes, Flavocetraria cucullata and Flavocetraria nivalis, which are widespread in arctic and alpine tundra. Location, Circumpolar North. Methods, DNA sequences were obtained for 90 specimens (49 for F. cucullata and 41 for F. nivalis) collected from various locations in Europe, Asia and North America. Sequences of the nuclear internal transcribed spacer (ITS) + 5.8S ribosomal subunit gene region were generated for 89 samples, and supplemented by beta-tubulin (BTUB) and translation elongation factor 1-alpha gene (EF1) sequences for a subset of F. cucullata specimens. Phylogenetic, nonparametric permutation methods and coalescent analyses were used to assess population divergence and to estimate the extent and direction of migration among continents. Results, Both F. cucullata and F. nivalis were monophyletic, supporting their morphology-based delimitation, and had high and moderately high intraspecific genetic diversity, respectively. Clades within each species contained specimens from both North America and Eurasia. We found only weak genetic differentiation among North American and Eurasian populations, and evidence for moderate to high transoceanic gene flow. Main conclusions, Our results suggest that both F. cucullata and F. nivalis have been able to migrate over large distances in response to climatic fluctuations. The high genetic diversity observed in the Arctic indicates long-term survival at high latitudes, whereas the estimated migration rates and weak geographic population structure suggest a continuing long-distance gene flow between continents that has prevented pronounced genetic differentiation. The mode of long-distance dispersal is unknown, but wind dispersal of conidia and/or ascospores is probably important in the open arctic landscapes. The high genetic diversity and efficient long-distance dispersal capability of F. cucullata and F. nivalis suggest that these species, and perhaps other arctic lichens as well, will be able to track their potential niche in the changing Arctic. [source]


    Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses

    JOURNAL OF BIOGEOGRAPHY, Issue 11 2007
    Corinne L. Richards
    Abstract Statistical phylogeographic studies contribute to our understanding of the factors that influence population divergence and speciation, and that ultimately generate biogeographical patterns. The use of coalescent modelling for analyses of genetic data provides a framework for statistically testing alternative hypotheses about the timing and pattern of divergence. However, the extent to which such approaches contribute to our understanding of biogeography depends on how well the alternative hypotheses chosen capture relevant aspects of species histories. New modelling techniques, which explicitly incorporate spatio-geographic data external to the gene trees themselves, provide a means for generating realistic phylogeographic hypotheses, even for taxa without a detailed fossil record. Here we illustrate how two such techniques , species distribution modelling and its historical extension, palaeodistribution modelling , in conjunction with coalescent simulations can be used to generate and test alternative hypotheses. In doing so, we highlight a few key studies that have creatively integrated both historical geographic and genetic data and argue for the wider incorporation of such explicit integrations in biogeographical studies. [source]


    Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia

    JOURNAL OF BIOGEOGRAPHY, Issue 3 2005
    Michael N Dawson
    Abstract Aim, Phylogeography provides a framework to explain and integrate patterns of marine biodiversity at infra- and supra-specific levels. As originally expounded, the phylogeographic hypotheses are generalities that have limited discriminatory power; the goal of this study is to generate and test specific instances of the hypotheses, thereby better elucidating both local patterns of evolution and the conditions under which the generalities do or do not apply. Location, Coastal south-east Australia (New South Wales, Tasmania and Victoria), and south-west North America (California and Baja California). Methods, Phylogeographic hypotheses specific to coastal south-east Australia were generated a priori, principally from existing detailed distributional analyses of echinoderms and decapods. The hypotheses are tested using mitochondrial cytochrome c oxidase subunit I (COI) and nuclear internal transcribed spacer 1 (ITS1) DNA sequence data describing population variation in the jellyfish Catostylus mosaicus, integrated with comparable data from the literature. Results, Mitochondrial COI distinguished two reciprocally monophyletic clades of C. mosaicus (mean ± SD: 3.61 ± 0.40% pairwise sequence divergence) that were also differentiated by ITS1 haplotype frequency differences; the boundary between the clades was geographically proximate to a provincial zoogeographic boundary in the vicinity of Bass Strait. There was also limited evidence of another genetic inhomogeneity, of considerably smaller magnitude, in close proximity to a second hypothesized zoogeographic discontinuity near Sydney. Other coastal marine species also show genetic divergences in the vicinity of Bass Strait, although they are not closely concordant with each other or with reported biogeographic discontinuities in the region, being up to several hundreds of kilometres apart. None of the species studied to date show a strong phylogeographic discontinuity across the biogeographic transition zone near Sydney. Main conclusions, Patterns of evolution in the Bass Strait and coastal New South Wales regions differ fundamentally because of long-term differences in extrinsic factors. Since the late Pliocene, periods of cold climate and low sea-level segregated warm temperate organisms east or west of an emergent Bassian Isthmus resulting in population divergence and speciation; during subsequent periods of warmer and higher seas, sister taxa expanded into the Bass Strait region leading to weakly correlated phylogeographic and biogeographic patterns. The Sydney region, by contrast, has been more consistently favourable to shifts in species' ranges and long-distance movement, resulting in a lack of intra-specific and species-level diversification. Comparisons between the Sydney and Bass Strait regions and prior studies in North America suggest that vicariance plays a key role in generating coastal biodiversity and that dispersal explains many of the deviations from the phylogeographic hypotheses. [source]


    Population differences in behaviour are explained by shared within-population trait correlations

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2010
    JONATHAN N. PRUITT
    Abstract Correlations in behavioural traits across time, situation and ecological context (i.e. ,behavioural syndromes' or ,personality') have been documented for a variety of behaviours, and in diverse taxa. Perhaps the most controversial inference from the behavioural syndromes literature is that correlated behaviour may act as an evolutionary constraint and evolutionary change in one's behaviour may necessarily involve shifts in others. We test the two predictions of this hypothesis using comparative data from eighteen populations of the socially polymorphic spider, Anelosimus studiosus (Araneae, Theriidae). First, we ask whether geographically distant populations share a common syndrome. Second, we test whether population differences in behaviour are correlated similarly to within-population trait correlations. Our results reveal that populations separated by as much as 36° latitude shared similar syndromes. Furthermore, population differences in behaviour were correlated in the same manner as within-population trait correlations. That is, population divergence tended to be along the same axes as within-population covariance. Together, these results suggest a lack of evolutionary independence in the syndrome's constituent traits. [source]


    Evolutionary acceleration in the most endangered mammal of Canada: speciation and divergence in the Vancouver Island marmot (Rodentia, Sciuridae)

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2007
    A. CARDINI
    Abstract The Vancouver Island marmot is the most endangered mammal of Canada. Factors which have brought this population to the verge of extinction have not yet been fully elucidated, but the effects of deforestation and habitat fragmentation on survival rates, as well as those of variation in rainfall, temperature, snowpack depth and snowmelt strongly suggest that marmots on the island are struggling to keep pace with environmental changes. Genetic analyses, however, seem to indicate that the Vancouver Island marmot may merely represent a melanistic population of its parental species on the mainland. Were it not for its black pelage colour, it is unlikely that it would have attracted much attention as a conservation priority. Our study uses three-dimensional coordinates of cranial landmarks to further assess phenotypic differentiation of the Vancouver Island marmot. A pattern of strong interspecific divergence and low intraspecific variation was found which is consistent with aspects of drift-driven models of speciation. However, the magnitude of shape differences relative to the putatively neutral substitutions in synonymous sites of cytochrome b is too large for being compatible with a simple neutral model. A combination of bottlenecks and selective pressures due to natural and human-induced changes in the environment may offer a parsimonious explanation for the large phenotypic differentiation observed in the species. Our study exemplifies the usefulness of a multidisciplinary approach to the study of biological diversity for a better understanding of evolutionary models and to discover aspects of diversity that may be undetected by using only a few genetic markers to characterize population divergence and uniqueness. [source]


    Morphological and genetic divergence of intralacustrine stickleback morphs in Iceland: a case for selective differentiation?

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2007
    G. Á. ÓLAFSDÓTTIR
    Abstract The evolutionary processes involved in population divergence and local adaptation are poorly understood. Theory predicts that divergence of adjacent populations is possible but depends on several factors including gene flow, divergent selection, population size and the number of genes involved in divergence and their distribution on the genome. We analyse variation in neutral markers, markers linked to putative quantitative trait loci and morphological traits in a recent (< 10 000 years) zone of primary divergence between stickleback morphs in Lake Thingvallavatn, Iceland. Environmental factors, especially predation, are clearly implicated in reducing gene flow between morphs. There is continuous morphological and genetic variation between habitats with a zone centre similar to secondary contact zones. Individual microsatellite loci are implicated as being linked to adaptive variation by direct tests as well as by differences in cline shape. Patterns of linkage disequilibria indicate that the morphs have diverged at several loci. This divergence shows parallels and differences with the well-studied limnetic,benthic stickleback morphs, both in phenotypic divergence and at the genomic level. [source]


    Replicated population divergence caused by localized coevolution?

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2006
    A test of three hypotheses in the red crossbill-lodgepole pine system
    Abstract Several lines of evidence support the hypothesis that local populations of red crossbills (Loxia curvirostra complex) enter into a predator-prey arms race with lodgepole pine (Pinus contorta latifolia) in the absence of competing pine squirrels (Tamiasciurus hudsonicus). Nevertheless, the alternative hypotheses that neutral evolution or factors other than squirrels have caused crossbill population differentiation have not been thoroughly tested. We compared crossbill and pine cone morphology between island populations where squirrels are absent or present, and mainland sites where squirrels are present, in order to distinguish among these hypotheses. All comparisons supported an effect of squirrel absence, not island status, on crossbill and cone morphology. Hence our results provide further evidence that strong localized coevolutionary interactions in a geographic mosaic have driven adaptive population differentiation. In addition, vocal differentiation of crossbills was related to the absence of squirrels, but not to island status. As morphological and vocal differentiation is correlated with reproductive isolation in crossbills, the geographic mosaic of coevolution also seems to promote ecological speciation. [source]


    Song similarity predicts hybridization in flycatchers

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2006
    A. QVARNSTRÖM
    Abstract Given that population divergence in sexual signals is an important prerequisite for reproductive isolation, a key prediction is that cases of signal convergence should lead to hybridization. However, empirical studies that quantitatively demonstrate links between phenotypic characters of individuals and their likelihood to hybridize are rare. Here we show that song convergence between sympatric pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) influence social and sexual interactions between the two species. In sympatry, the majority of male pied flycatchers (65%) include various parts of collared flycatcher song in their song repertoire (but not vice versa). Playback experiments on male interactions demonstrate that male collared flycatchers respond similarly to this ,mixed' song as to conspecific song. Long-term data on pairing patterns show that males singing a converged song attract females of the other species: female collared flycatchers only pair with male pied flycatchers if the males sing the mixed song type. From the perspective of a male pied flycatcher, singing a mixed song type is associated with 30% likelihood of hybridization. This result, combined with our estimates of the frequency of mixed singers, accurately predicts the observed occurrence of hybridization among male pied flycatchers in our study populations (20.45% of 484 pairs; predicted 19.5%). Our results support the suggestion that song functions as the most important prezygotic isolation mechanism in many birds. [source]


    Habitat specialization and adaptive phenotypic divergence of anuran populations

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2005
    J. VAN BUSKIRK
    Abstract We tested for adaptive population structure in the frog Rana temporaria by rearing tadpoles from 23 populations in a common garden experiment, with and without larval dragonfly predators. The goal was to compare tadpole phenotypes with the habitats of their source ponds. The choice of traits and habitat variables was guided by prior information about phenotypic function. There were large differences among populations in life history, behaviour, morphological shape, and the predator-induced plasticities in most of these. Body size and behaviour were correlated with predation risk in the source pond, in agreement with adaptive population divergence. Tadpoles from large sunny ponds were morphologically distinct from those inhabiting small woodland ponds, although here an adaptive explanation was unclear. There was no evidence that plasticity evolves in populations exposed to more variable environments. Much among-population variation in phenotype and plasticity was not associated with habitat, perhaps reflecting rapid changes in wetland habitats. [source]


    Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2003
    M. T. Kinnison
    Abstract Energetically demanding migrations may impact the resources available for reproductive trait development and activity, and hence favour evolution of new investment strategies for remaining resources. We conducted a large-scale experiment to evaluate the proximate cost of migration on male reproductive investment in chinook salmon (Oncorhynchus tshawytscha) and contemporary evolution of reproductive allocation. Experimentally induced differences in migratory costs (17 km inland and 17 m elevation vs. 100 km and 430 m) influenced dorsal hump size and upper jaw length, two traits influencing male mating success that are developed during migration. Longer migration also reduced tissue energy reserves available for competition and length of breeding life. Corresponding shifts in the balance between natural and sexual selection appear to have been responsible for heritable population divergence in secondary sexual trait investment, in approximately 26 generations, following colonization of spawning sites with different migratory demands. [source]


    Population consequences of maternal effects: sex-bias in egg-laying order facilitates divergence in sexual dimorphism between bird populations

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2002
    A. V. Badyaev
    Abstract When costs and benefits of raising sons and daughters differ between environments, parents may be selected to modify their investment into male and female offspring. In two recently colonized environments, breeding female house finches (Carpodacus mexicanus) modified the sex and growth of their offspring in relation to the order in which eggs were laid in a clutch. Here we show that, in both populations, these maternal effects strongly biased frequency distribution of tarsus size of fully grown males and females and ultimately produced population divergence in this trait. Although in each population, male and female offspring show a wide range of growth patterns, maternal modifications of sex-ratio in relation to egg-laying order resulted in under-representation of the morphologies that were selected against and over-representation of morphologies that were favoured by the local selection on juveniles. The result of these maternal adjustments was fast phenotypic change in sexual size dimorphism within and between populations. Maternal manipulations of offspring morphologies may be especially important at the initial stages of population establishment in the novel environments and may have facilitated recent colonization of much of North America by the house finch. [source]


    Dispersal distances predict subspecies richness in birds

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2000
    Belliure
    Dispersal ability has been hypothesized to reduce intraspecific differentiation by homogenizing populations. On the other hand, long-distance dispersers may have better opportunities to colonize novel habitats, which could result in population divergence. Using direct estimates of natal and breeding dispersal distances, we investigated the relationship between dispersal distances and: (i) population differentiation, assessed as subspecies richness; (ii) ecological plasticity, assessed as the number of habitats used for breeding; and (iii) wing size, assessed as wing length. The number of subspecies was negatively correlated with dispersal distances. This was the case also after correcting for potential confounding factors such as migration and similarity due to common ancestry. Dispersal was not a good predictor of ecological plasticity, suggesting that long-distance dispersers do not have more opportunities to colonize novel habitats. Residual wing length was related to natal dispersal, but only for sedentary species. Overall, these results suggest that dispersal can have a homogenizing effect on populations and that low dispersal ability might promote speciation. [source]


    Divergent character clines across a recent secondary contact zone in a Hispaniolan lizard

    JOURNAL OF ZOOLOGY, Issue 3 2008
    M. E. Gifford
    Abstract Studies of genetic contact zones provide valuable information regarding the processes of population divergence, adaptation and speciation. In this paper, I examine transitions in morphology, mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) haplotypes across a recent secondary contact zone in a Hispaniolan lizard Ameiva chrysolaema. Maximum likelihood cline fitting analyses suggest non-coincidence of cline centers and that the mtDNA cline is significantly displaced to the west of the remaining clines. nDNA and morphological clines are coincident and tend to be associated with the prevailing environmental gradient. The lack of cytonuclear disequilibrium near the center of the contact zone and the non-coincidence of character clines suggest that this zone does not conform to a tension zone model of hybridization; thus, gene flow across the zone does not seem to be impeded. The extremely narrow width of the dorsal scale size cline and the close association of this cline with the steepness of the environmental (precipitation) gradient suggest that this character may be under environmental selection. Taken together, this contact zone appears to be structured by a combination of mtDNA introgression, possibly associated with eastward movement of the zone, and environmental selection on some characters. [source]


    When can ecological speciation be detected with neutral loci?

    MOLECULAR ECOLOGY, Issue 11 2010
    XAVIER THIBERT-PLANTE
    Abstract It is not yet clear under what conditions empirical studies can reliably detect progress toward ecological speciation through the analysis of allelic variation at neutral loci. We use a simulation approach to investigate the range of parameter space under which such detection is, and is not, likely. We specifically test for the conditions under which divergent natural selection can cause a ,generalized barrier to gene flow' that is present across the genome. Our individual-based numerical simulations focus on how population divergence at neutral loci varies in relation to recombination rate with a selected locus, divergent selection on that locus, migration rate and population size. We specifically test whether genetic differences at neutral markers are greater between populations in different environments than between populations in similar environments. We find that this expected signature of ecological speciation can be detected under part of the parameter space, most consistently when divergent selection is strong and migration is intermediate. By contrast, the expected signature of ecological speciation is not reliably detected when divergent selection is weak or migration is low or high. These findings provide insights into the strengths and weaknesses of using neutral markers to infer ecological speciation in natural systems. [source]


    Phylogeography of Douglas-fir based on mitochondrial and chloroplast DNA sequences: testing hypotheses from the fossil record

    MOLECULAR ECOLOGY, Issue 9 2010
    PAUL F. GUGGER
    Abstract The integration of fossil and molecular data can provide a synthetic understanding of the ecological and evolutionary history of an organism. We analysed range-wide maternally inherited mitochondrial DNA and paternally inherited chloroplast DNA sequence data with coalescent simulations and traditional population genetic methods to test hypotheses of population divergence generated from the fossil record of Douglas-fir (Pseudotsuga menziesii), an ecologically and economically important western North American conifer. Specifically, we tested (i) the hypothesis that the Pliocene orogeny of the Cascades and Sierra Nevada caused the divergence of coastal and Rocky Mountain Douglas-fir varieties; and (ii) the hypothesis that multiple glacial refugia existed on the coast and in the Rocky Mountains. We found that Douglas-fir varieties diverged about 2.11 Ma (4.37 Ma,755 ka), which could be consistent with a Pliocene divergence. Rocky Mountain Douglas-fir probably resided in three or more glacial refugia. More variable molecular markers would be required to detect the two coastal refugia suggested in the fossil record. Comparison of mitochondrial DNA and chloroplast DNA variation revealed that gene flow via pollen linked populations isolated from seed exchange. Postglacial colonization of Canada from coastal and Rocky Mountain refugia near the ice margin at the Last Glacial Maximum produced a wide hybrid zone among varieties that formed almost exclusively by pollen exchange and chloroplast DNA introgression, not seed exchange. Postglacial migration rates were 50,165 m/year, insufficient to track projected 21st century warming in some regions. Although fossil and genetic data largely agree, each provides unique insights. [source]