Home About us Contact | |||
Population Comparisons (population + comparison)
Selected AbstractsEcological correlates of body size in relation to cell size and cell number: patterns in flies, fish, fruits and foliageBIOLOGICAL REVIEWS, Issue 2 2007Jeff Arendt Abstract Body size is important to most aspects of biology and is also one of the most labile traits. Despite its importance we know remarkably little about the proximate (developmental) factors that determine body size under different circumstances. Here, I review what is known about how cell size and number contribute to phenetic and genetic variation in body size in Drosophila melanogaster, several fish, and fruits and leaves of some angiosperms. Variation in resources influences size primarily through changes in cell number while temperature acts through cell size. The difference in cellular mechanism may also explain the differences in growth trajectories resulting from food and temperature manipulations. There is, however, a poorly recognized interaction between food and temperature effects that needs further study. In addition, flies show a sexual dimorphism in temperature effects with the larger sex responding by changes in cell size and the smaller sex showing changes in both cell size and number. Leaf size is more variable than other organs, but there appears to be a consistent difference between how shade-tolerant and shade-intolerant species respond to light level. The former have larger leaves via cell size under shade, the latter via cell number in light conditions. Genetic differences, primarily from comparisons of D. melanogaster, show similar variation. Direct selection on body size alters cell number only, while temperature selection results in increased cell size and decreased cell number. Population comparisons along latitudinal clines show that larger flies have both larger cells and more cells. Use of these proximate patterns can give clues as to how selection acts in the wild. For example, the latitudinal pattern in D. melanogaster is usually assumed to be due to temperature, but the cellular pattern does not match that seen in laboratory selection at different temperatures. [source] Dispersion patterns of parasites in 0+ year three-spined sticklebacks: a cross population comparisonJOURNAL OF FISH BIOLOGY, Issue 6 2002M. Kalbe Two ciliates and 16 metazoan parasites were identified in 434 0+ year three-spined sticklebacks Gasterosteus aculeatus collected from two small rivers and four lakes located in Schleswig-Holstein, Germany. By repeated sampling and analysis of dispersion patterns of six frequently occurring parasites no consistent evidence was found for mortality induced by a single parasite species. Linear log-variance to log-mean abundance ratios with slopes of c. 2 indicated negative binomial distributions for five of the six parasites. The numbers of these six parasites were combined as multiples of S.D. of each parasite species over all samples to form an ,individual parasitation index' (IPI), which showed that only in one locality a slight decrease in parasite burden occurred between September and April. In two of the lake populations, however, there was a distinct decline in the degree of dispersion in spring samples. This indicates that a combination of different species might cause parasite-induced host mortality, undetectable by patterns obtained from single species. There were differences in parasite diversity and intensity of infection among river compared to lake populations suggesting a role for parasites as selective agents in the ecological divergence of three-spined sticklebacks. [source] Social Network Analysis of the Genetic Structure of Pacific IslandersANNALS OF HUMAN GENETICS, Issue 3 2010John Edward Terrell Summary Social network analysis (SNA) is a body of theory and a set of relatively new computer-aided techniques used in the analysis and study of relational data. Recent studies of autosomal markers from over 40 human populations in the south-western Pacific have further documented the remarkable degree of genetic diversity in this part of the world. I report additional analysis using SNA methods contributing new controlled observations on the structuring of genetic diversity among these islanders. These SNA mappings are then compared with model-based network expectations derived from the geographic distances among the same populations. Previous studies found that genetic divergence among island Melanesian populations is organised by island, island size/topography, and position (coastal vs. inland), and that similarities observed correlate only weakly with an isolation-by-distance model. Using SNA methods, however, improves the resolution of among population comparison, and suggests that isolation by distance constrained by social networks together with position (coastal/inland) accounts for much of the population structuring observed. The multilocus data now available is also in accord with current thinking on the impact of major biogeographical transformations on prehistoric colonisation and post-settlement human interaction in Oceania. [source] Population differences in the International Multi-Centre ADHD Gene ProjectGENETIC EPIDEMIOLOGY, Issue 2 2008Benjamin M. Neale Abstract The International Multi-Centre ADHD Gene sample consists of 674 families from eight countries (Belgium, England, Germany, Holland, Ireland, Israel, Spain, and Switzerland) ascertained from clinics for combined-type attention definity hyperactivity disorder in an offspring. 863 SNPs were successfully genotyped across 47 autosomal genes implicated in psychiatric disorders yielding a single nucleotide polymorphism (SNP) density of approximately one SNP per 2.5,kb. A global test of heterogeneity showed 269 SNPs nominally significant (expected 43). Inclusion of the Israeli population accounted for approximately 70% of these nominally significant tests. Hardy-Weinberg equilibrium tests suggest that combining all these populations would induce stratification, but that the Northern European populations (Belgium, England, Germany, Holland, and Ireland) could be appropriate. Tag SNPs were generated using pair-wise and aggressive tagging from Carlson et al. [2004] and de Bakker et al. [2005], respectively, in each population and applied to the other populations. Cross-population performance across Northern Europe was consistent with within population comparisons. Smaller sample size for each population tended to yield more problems for the generation of aggressive tags and the application of pair-wise tags. Any case-control sample employing an Israeli sample with Northern Europeans must consider stratification. A Northern European tag set, however, appears to be appropriate for capturing the variation across populations. Genet. Epidemiol. 2008. © 2007 Wiley-Liss, Inc. [source] Relationship among five populations of Bactrocera dorsalis based on mitochondrial DNA sequences in western Yunnan, ChinaJOURNAL OF APPLIED ENTOMOLOGY, Issue 7 2008P. Chen Abstract Genetic variation in the Oriental fruit fly, Bactrocera dorsalis (Hendel), was analysed using five populations from western Yunnan, China, to elucidate the distribution and likely dispersal patterns of this fly. A 503-bp portion of the mitochondrial cytochrome oxidase gene was sequenced from a minimum of seven individuals from each of five fly populations; 25 haplotypes were observed among 57 individuals in these populations. High genetic diversity within populations was detected. Genetic distances between haplotypes reached 1.2%. Mantel tests did not indicate any isolation because of geographic distance. The Ruili (RL) population was significantly isolated from the others (pairwise Fst ranging from 0.10 to 0.21, and average genetic distances being higher than for all other four population comparisons). RL is geographically separated from the other sites by the Gaoligong Mountains. The Liuku (LK) population had a close genetic relationship with the Lujiangba (LJB) population, suggesting that the LK population probably originated from LJB that is located in the same valley to the south. The Baoshan (BS) and Dali (DL) populations were also geographically isolated from the others, not originating from LJB and RL, where the fly is present year-round. The north-south orientation of mountains and valleys in western Yunnan appears to prevent latitudinal gene exchange by dispersing flies and thus divides the five populations into four relatively independent zones, namely BS, DL, LK-LJB and RL. In addition, air currents that generally flow south to north appear to assist dispersing flies, especially in valleys between the mountain chains. [source] Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservationMOLECULAR ECOLOGY, Issue 11 2003Maristerra R. Lemes Abstract Mahogany (Swietenia macrophylla, Meliaceae) is the most valuable and intensively exploited Neotropical tree. No information is available regarding the genetic structure of mahogany in South America, yet the region harbours most of the unlogged populations of this prized hardwood. Here we report on the genetic diversity within and the differentiation among seven natural populations separated by up to 2100 km along the southern arc of the Brazilian Amazon basin. We analysed the variation at eight microsatellite loci for 194 adult individuals. All loci were highly variable, with the number of alleles per locus ranging from 13 to 27 (mean = 18.4). High levels of genetic diversity were found for all populations at the eight loci (mean HE = 0.781, range 0.754,0.812). We found moderate but statistically significant genetic differentiation among populations considering both estimators of FST and RST, , = 0.097 and , = 0.147, respectively. Estimates of , and , were significantly greater than zero for all pairwise population comparisons. Pairwise ,-values were positively and significantly correlated with geographical distance under the isolation-by-distance model. Furthermore, four of the populations exhibited a significant inbreeding coefficient. The finding of local differentiation among Amazonian mahogany populations underscores the need for in situ conservation of multiple populations of S. macrophylla across its distribution in the Brazilian Amazon. In addition, the occurrence of microgeographical genetic differentiation at a local scale indicates the importance of maintaining populations in their diverse habitats, especially in areas with mosaics of topography and soil. [source] Discordance in body size, colour pattern, and advertisement call across genetically distinct populations in a Neotropical anuran (Dendropsophus ebraccatus)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2009MICHEL E. OHMER Patterns of intraspecific geographic variation in morphology and behaviour, when examined in a phylogenetic context, can provide insight into the microevolutionary processes driving population divergence and ultimately speciation. In the present study, we quantified behavioural and phenotypic variation among populations from genetically divergent regions in the Central American treefrog, Dendropsophus ebraccatus. Our fine-scale population comparisons demonstrated regional divergence in body size, colour pattern frequencies, and male advertisement call. None of the characters covaried with phylogenetic history or geographic proximity among sampled populations, indicating the importance of highly localized selection pressures and genetic drift in shaping character divergence among isolated regions. The study underscores how multiple phenotypic characters can evolve independently across relatively small spatial scales. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 298,313. [source] |