Home About us Contact | |||
Population Abundance (population + abundance)
Selected AbstractsExtent of Nontimber Resource Extraction in Tropical Forests: Accessibility to Game Vertebrates by Hunters in the Amazon BasinCONSERVATION BIOLOGY, Issue 2 2003Carlos A. Peres We conducted a basin-wide geographic information system analysis of the nonmotorized accessibility of Amazonian NTFP extraction and estimated the proportion of the Amazon drainage basin within Brazil ( 3.74 million km 2 ) that can be accessed on foot from the nearest navigable river or functional road. We use a long-term series of standardized line-transect vertebrate censuses conducted throughout the region to illustrate the effects of physical accessibility on wildlife densities in terms of hunting pressure as a function of distance from the nearest point of access. Population abundance in large-bodied, prime-target species preferred by game hunters tended to increase at greater distances from the access matrix, whereas small-bodied species ignored by hunters usually showed the reverse trend. In addition, we estimated the proportion of presumably inviolate core areas within nature, extractive, and indigenous reserves of Brazilian Amazonia that are prohibitively remote and unlikely to be overhunted; for instance, only 1.16% of the basin-wide area is strictly protected on paper and is reasonably safe from extractive activities targeted to game vertebrates and other valuable NTFPs. Finally, we discuss the concept of truly undisturbed wildlands in the last major tropical forest regions by distinguishing potentially overharvested areas from those that remain largely or entirely pristine and that maintain viable populations of a full complement of harvest-sensitive species. Resumen: Las actividades de extracción enfocadas en un amplio rango de productos forestales no maderables ( NTFPs ) son omnipresentes en los bosques tropicales. Sin embargo, la extensión de bosques estructuralmente intactos en una determinada región afectada por esta forma de perturbación críptica ha sido escasamente documentada. Realizamos un análisis GIS del acceso no motorizado para la extracción NTFP en el Amazonas y estimamos la proporción de la desembocadura de la cuenca amazónica ( ,3.74 millones de km2 ) a la cual se puede acceder a pie a partir del río navegable o la carretera funcional más cercana. Utilizamos series de censos de vertebrados a largo plazo empleando transectos en línea estandarizados a lo largo de la región para ejemplificar los efectos del acceso físico sobre las densidades de vida silvestre en términos de presión de caza como función de la distancia al punto de acceso más cercano. La abundancia poblacional de especies de cuerpo grande que son blancos preferidos por los cazadores tendió a crecer a mayores distancias de la matriz de acceso, mientras que las especies de cuerpo pequeño ignoradas por los cazadores generalmente muestran la tendencia inversa. Además, estimamos la proporción de áreas medulares presuntamente inviolables dentro de las reservas naturales, extractivas e indígenas del Amazonas brasileño que son prohibitivamente remotas y poco probables de ser sobreexplotadas: por ejemplo, solo el 1.16% del área de la cuenca estrictamente proyectada en papel está razonablemente a salvo de las actividades extractivas de los vertebrados de caza y otras NTFPs valiosas. Finalmente, discutimos el concepto de tierras silvestres verdaderamente no perturbadas en las grandes regiones de bosque tropical restantes diferenciando las áreas potencialmente sobreexplotadas de aquellas que son en su mayor parte o totalmente prístinas y que mantienen poblaciones viables de un complemento total de especies sensibles a la cosecha. [source] Measurement Error in a Random Walk Model with Applications to Population DynamicsBIOMETRICS, Issue 4 2006John Staudenmayer Summary Population abundances are rarely, if ever, known. Instead, they are estimated with some amount of uncertainty. The resulting measurement error has its consequences on subsequent analyses that model population dynamics and estimate probabilities about abundances at future points in time. This article addresses some outstanding questions on the consequences of measurement error in one such dynamic model, the random walk with drift model, and proposes some new ways to correct for measurement error. We present a broad and realistic class of measurement error models that allows both heteroskedasticity and possible correlation in the measurement errors, and we provide analytical results about the biases of estimators that ignore the measurement error. Our new estimators include both method of moments estimators and "pseudo"-estimators that proceed from both observed estimates of population abundance and estimates of parameters in the measurement error model. We derive the asymptotic properties of our methods and existing methods, and we compare their finite-sample performance with a simulation experiment. We also examine the practical implications of the methods by using them to analyze two existing population dynamics data sets. [source] Management and Recovery Options for Ural River Beluga SturgeonCONSERVATION BIOLOGY, Issue 3 2010PHAEDRA DOUKAKIS caviar; CITES; criadero; Mar Caspio; puntos de referencia; sobrepesca Abstract:,Management of declining fisheries of anadromous species sometimes relies heavily on supplementation of populations with captive breeding, despite evidence that captive breeding can have negative consequences and may not address the root cause of decline. The beluga sturgeon (Huso huso), a species threatened by the market for black caviar and reductions in habitat quality, is managed through harvest control and hatchery supplementation, with an emphasis on the latter. We used yield per recruit and elasticity analyses to evaluate the population status and current levels of fishing and to identify the life-history stages that are the best targets for conservation of beluga of the Ural River. Harvest rates in recent years were four to five times higher than rates that would sustain population abundance. Sustainable rates of fishing mortality are similar to those for other long-lived marine species such as sharks and mammals. Yield per recruit, which is maximized if fish are first harvested at age 31 years, would be greatly enhanced by raising minimum size limits or reducing illegal take of subadults. Improving the survival of subadult and adult females would increase population productivity by 10 times that achieved by improving fecundity and survival from egg to age 1 year (i.e., hatchery supplementation). These results suggest that reducing mortality of subadults and adult wild fish is a more effective conservation strategy than hatchery supplementation. Because genetics is not factored into hatchery management practices, supplementation may even reduce the viability of the beluga sturgeon. Resumen:,El manejo de pesquerías de peces anádromos en declinación a veces depende estrechamente de la suplementación de poblaciones mediante la reproducción en cautiverio, no obstante la evidencia de que la reproducción en cautiverio puede tener consecuencias negativas y no abordar la causa principal de la declinación. El esturión beluga (Huso huso), una especie amenazada por el mercado de caviar negro y por reducciones en la calidad del hábitat, es manejado mediante el control de la cosecha y suplementación de poblaciones, con énfasis en esta. Utilizamos análisis de producción por recluta y de elasticidad para evaluar el estatus de la población y los niveles de pesca actuales y para identificar las etapas de la historia de vida que son los mejores blancos para la conservación del beluga en el Río Ural. Las tasas de cosecha en años recientes fueron cuatro a cinco veces mayores que las tasas que sustentarían la abundancia de la población. Las tasas sustentables de mortalidad por pesca son similares a las de otras especies marinas longevas como tiburones y mamíferos. La producción por recluta, que es maximizada si los peces son cosechados a la edad de 31 años, podría incrementar significativamente elevando los límites de talla mínima o reduciendo la captura ilegal de subadultos. La mejora de la supervivencia de hembras subadultas y adultas incrementaría la productividad de la población 10 veces más que la mejora obtenida incrementando la fecundidad y supervivencia de huevo a 1 año de edad (i. e., suplementación de poblaciones mediante reproducción en cautiverio). Estos resultados sugieren que la reducción de la mortalidad de peces silvestres subadultos y adultos es una mejor estrategia de conservación que la suplementación. Debido a que la genética no es considerada en las prácticas de manejo en los criaderos, la suplementación incluso puede reducir la viabilidad del esturión beluga. [source] The Interplay between Climate Variability and Density Dependence in the Population Viability of Chinook SalmonCONSERVATION BIOLOGY, Issue 1 2006RICHARD W. ZABEL análisis de viabilidad poblacional; especies en peligro; Oncorhynchus tshawytscha Abstract:,The viability of populations is influenced by driving forces such as density dependence and climate variability, but most population viability analyses (PVAs) ignore these factors because of data limitations. Additionally, simplified PVAs produce limited measures of population viability such as annual population growth rate (,) or extinction risk. Here we developed a "mechanistic" PVA of threatened Chinook salmon (Oncorhynchus tshawytscha) in which, based on 40 years of detailed data, we related freshwater recruitment of juveniles to density of spawners, and third-year survival in the ocean to monthly indices of broad-scale ocean and climate conditions. Including climate variability in the model produced important effects: estimated population viability was very sensitive to assumptions of future climate conditions and the autocorrelation contained in the climate signal increased mean population abundance while increasing probability of quasi extinction. Because of the presence of density dependence in the model, however, we could not distinguish among alternative climate scenarios through mean , values, emphasizing the importance of considering multiple measures to elucidate population viability. Our sensitivity analyses demonstrated that the importance of particular parameters varied across models and depended on which viability measure was the response variable. The density-dependent parameter associated with freshwater recruitment was consistently the most important, regardless of viability measure, suggesting that increasing juvenile carrying capacity is important for recovery. Resumen:,La viabilidad de poblaciones esta influida por fuerzas conductoras como la denso dependencia y la variabilidad climática, pero la mayoría de los análisis de viabilidad poblacional (AVP) ignoran estos factores debido a limitaciones en la disponibilidad de datos. Adicionalmente, los AVP simplificados producen medidas limitadas de la viabilidad poblacional tales como la tasa anual de crecimiento poblacional (,) o el riesgo de extinción. Aquí desarrollamos un AVP "mecanicista" de Oncorhynchus tshawytscha en el que, con base en datos detallados de 40 años, relacionamos el reclutamiento de juveniles en agua dulce con la densidad de reproductores, y la supervivencia en el océano al tercer año con índices mensuales de condiciones oceánicas y climáticas a amplia escala. La inclusión de la variabilidad climática en el modelo produjo efectos importantes: la viabilidad poblacional estimada fue muy sensible a las suposiciones de condiciones climáticas futuras y la autocorrelación contenida en la señal climática aumentó la abundancia poblacional promedio al mismo tiempo que incrementó la probabilidad de cuasi extinción. Sin embargo, debido a la presencia de denso densidad en el modelo no pudimos distinguir entre escenarios climáticos alternativos a través de los valores promedio de ,, lo que enfatiza la importancia de considerar medidas múltiples para dilucidar la viabilidad poblacional. Nuestros análisis de sensibilidad demostraron que la importancia de parámetros particulares varió en los modelos y dependió de la medida de viabilidad utilizada como variable de respuesta. El parámetro de denso dependencia asociada con el reclutamiento en agua dulce consistentemente fue el más importante, independientemente de la medida de viabilidad, lo que sugiere que el incremento en la capacidad de carga de juveniles es importante para la recuperación. [source] Dynamics of an introduced population of mouflon Ovis aries on the sub-Antarctic archipelago of KerguelenECOGRAPHY, Issue 3 2010Renaud Kaeuffer A commonly reported pattern in large herbivores is their propensity to irrupt and crash when colonizing new areas. However, the relative role of density-dependence, climate, and cohort effects on demographic rates in accounting for the irruptive dynamics of large herbivores remains unclear. Using a 37-yr time series of abundance in a mouflon Ovis aries population located on Haute Island, a sub-Antarctic island of Kerguelen, 1) we investigated if irruptive dynamics occurred and 2) we quantified the relative effects of density and climate on mouflon population dynamics. Being released in a new environment, we expected mouflon to show rapid growth and marked over-compensation. In support of this prediction, we found a two-phase dynamics, the first phase being characterised by an irruptive pattern best described by the , -Caughley model. Parameter estimates were rm=0.29±0.005(maximum growth rate), K=473±45 (carrying capacity) and S=2903±396 (surplus) mouflon. With a ,=3.18±0.69 our model also supported the hypothesis that density dependence is strongest at high density in large herbivores. The second phase was characterised by an unstable dynamics where growth rate was negatively affected by population abundance and winter precipitation. Climate, however, did not trigger population crashes and our model suggested that lagged density-dependence and over-grazing were the probable causes of mouflon irruptive dynamics. We compare our results with those of Soay sheep and discuss the possibility of a reversible alteration of the island carrying capacity after the initial over-grazing period. [source] Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigeraENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2010Jin Yin Abstract Under elevated environmental carbon dioxide (CO2), leaf chewers tend to compensate for decreased leaf nutritional quality with increased consumption; mortality and development times also increase and cause a reduction in the fitness of leaf chewers. However, the effect of elevated CO2 on multiple successive generations of these and other insects is not well understood. Furthermore, information about the direct effects of increased environmental CO2 on developmental time and consumption of herbivores is lacking. In this paper, we tested the hypothesis that cascade effects of elevated CO2 through plants, rather than the direct effects of elevated CO2, are the main factors decreasing the fitness of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). We used two series of experiments to quantify the growth, development, and consumption of H. armigera fed on an artificial diet or C4 plants (maize) grown under two CO2 levels (ambient vs. double ambient). In the first series of experiments, elevated CO2 had no effect on the population abundance or individual consumption for three successive generations of cotton bollworms fed on an artificial diet. In the second series of experiments, elevated CO2 reduced population abundance of cotton bollworm larvae for two successive generations when they were fed maize milky grains. The specific effects were longer larval duration, lower fecundity, and decreased rm of cotton bollworms. Furthermore, elevated CO2 increased individual consumption when cotton bollworm was fed maize milky grains for two successive generations and decreased the population's total consumption in the first generation but increased it in the second generation. The results from this study indicate that: (1) The effects of elevated CO2 on three successive generations of cotton bollworm fed on artificial diet were weak, or even non-existent, and (2) elevated CO2 increased the consumption when cotton bollworm were fed maize. Our study also suggests that the damage inflicted by cotton bollworm on maize (a C4 plant) will be seriously affected by the increases in atmospheric CO2, which is unlike our previous results for spring wheat (a C3 plant). [source] Geostatistics in fisheries survey design and stock assessment: models, variances and applicationsFISH AND FISHERIES, Issue 3 2001Pierre Petitgas Abstract Over the past 10 years, fisheries scientists gradually adopted geostatistical tools when analysing fish stock survey data for estimating population abundance. First, the relation between model-based variance estimates and covariance structure enabled estimation of survey precision for non-random survey designs. The possibility of using spatial covariance for optimising sampling strategy has been a second motive for using geostatistics. Kriging also offers the advantage of weighting data values, which is useful when sample points are clustered. This paper discusses, with fisheries applications, the different geostatistical models that characterise spatial variation, and their variance formulae for many different survey designs. Some anticipated developments of geostatistics related to multivariate structures, temporal variability and adaptive sampling are discussed. [source] Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus)FISHERIES OCEANOGRAPHY, Issue 3 2002Keith A. Bigelow A new habitat-based model is developed to improve estimates of relative abundance of Pacific bigeye tuna (Thunnus obesus). The model provides estimates of `effective' longline effort and therefore better estimates of catch-per-unit-of-effort (CPUE) by incorporating information on the variation in longline fishing depth and depth of bigeye tuna preferred habitat. The essential elements in the model are: (1) estimation of the depth distribution of the longline gear, using information on gear configuration and ocean currents; (2) estimation of the depth distribution of bigeye tuna, based on habitat preference and oceanographic data; (3) estimation of effective longline effort, using fine-scale Japanese longline fishery data; and (4) aggregation of catch and effective effort over appropriate spatial zones to produce revised time series of CPUE. Model results indicate that effective effort has increased in both the western and central Pacific Ocean (WCPO) and eastern Pacific Ocean (EPO). In the WCPO, effective effort increased by 43% from the late 1960s to the late 1980s due primarily to the increased effectiveness of effort (deeper longline sets) rather than to increased nominal effort. Over the same period, effective effort increased 250% in the EPO due primarily to increased nominal effort. Nominal and standardized CPUE indices in the EPO show similar trends , a decline during the 1960s, a period of stability in the 1970s, high values during 1985,1986 and a decline thereafter. In the WCPO, nominal CPUE is stable over the time-series; however, standardized CPUE has declined by ,50%. If estimates of standardized CPUE accurately reflect relative abundance, then we have documented substantial reductions of bigeye tuna abundance for some regions in the Pacific Ocean. A decline in standardized CPUE in the subtropical gyres concurrent with stability in equatorial areas may represent a contraction in the range of the population resulting from a decline in population abundance. The sensitivity of the results to the habitat (temperature and oxygen) assumptions was tested using Monte Carlo simulations. [source] Lagged effects of North Atlantic Oscillation on spittlebug Philaenus spumarius (Homoptera) abundance and survivalGLOBAL CHANGE BIOLOGY, Issue 12 2006ANTTI HALKKA Abstract The North Atlantic Oscillation (NAO) is a large-scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate-connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970,2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969,1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969,1978. Even May,June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area. [source] Common birds facing global changes: what makes a species at risk?GLOBAL CHANGE BIOLOGY, Issue 1 2004Romain Julliard Abstract Climate change, habitat degradation, and direct exploitation are thought to threaten biodiversity. But what makes some species more sensitive to global change than others? Approaches to this question have relied on comparing the fate of contrasting groups of species. However, if some ecological parameter affects the fate of species faced with global change, species response should vary smoothly along the parameter gradient. Thus, grouping species into few, often two, discrete classes weakens the approach. Using data from the common breeding bird survey in France , a large set of species with much variability with respect to the variables considered , we show that a quantitative measure of habitat specialization and of latitudinal distribution both predict recent 13 year trends of population abundance among 77 terrestrial species: the more northerly distributed and the more specialized a species is, the sharper its decline. On the other hand, neither hunting status, migrating strategy nor body mass predicted population growth rate variation among common bird species. Overall, these results are qualitatively very similar to the equivalent relationships found among the British butterfly populations. This constitutes additional evidence that biodiversity in Western Europe is under the double negative influence of climate change and land use change. [source] Having your water and drinking it too: resource limitation modifies density regulationJOURNAL OF ANIMAL ECOLOGY, Issue 1 2008COREY J. A. BRADSHAW Determining the interaction between extrinsic and intrinsic drivers of variation in population abundance through time continues to challenge ecologists. Chamaillé-Jammes and colleagues (this issue) examined African elephant time series to explore how water availability alters the density feedback mechanisms restricting population growth. The relationship between population growth rate and density shifted from an upward convex to a more linear form after controlling for rainfall. Spatial variation in water availability also attenuated density dependence as elephants adjusted their distribution relative to current environmental conditions. This work has important climate change implications for the conservation management of African herbivores. [source] On the relation between temporal variability and persistence time in animal populationsJOURNAL OF ANIMAL ECOLOGY, Issue 6 2003Pablo Inchausti Summary 1The relationship between temporal variability, spectral redness and population persistence for a large number of long-term time series was investigated. Although both intuition and theory suggest that more variability in population abundance would mean greater probability of extinction, previous empirical support for this view has not been conclusive. Possible reasons are the shortage of long-term data and the difficulties of adequately characterizing temporal variability, two issues that are explicitly addressed in this paper. 2We examined the relationship between population variability and quasi-extinction time (measured as the time required to observe a 90% decline of population abundance) for a large set of data comprising 554 populations for 123 species that were censused for more than 30 years. Two aspects of temporal variability were considered in relation with the quasi-extinction time: a baseline value (coefficient of variation over a fixed, 30-year, time scale), and a measure of the rate of increase of the population variability over time (spectral exponent). 3The results show that the quasi-extinction time was shorter for populations having higher temporal variability and redder dynamics. The relation between persistence time and population variability was compared for different taxa, trophic levels, habitat type (aquatic and terrestrial) and body sizes and compared with theoretical expectations. [source] Population stability in salmon species: effects of population size and female reproductive allocationJOURNAL OF ANIMAL ECOLOGY, Issue 5 2003Sigurd Einum Summary 1Population stability (i.e. level of temporal variation in population abundance) is linked commonly to levels of environmental disturbances. However, populations may also differ in their propensity to dampen or amplify the effects of exogenous forces. Here time-series of population estimates were used to test for such differences among 104 populations of six salmon species. 2At the species level, Atlantic (Salmo salar L.), chinook (Oncorhynchus tshawytscha Walbaum) and coho salmon (O. kisutch W) were less variable than sockeye (O. nerka W) and pink salmon (O. gorbuscha W). Chum salmon (O. keta W) was more similar to sockeye and pink salmon. These differences may be related in part to differences in body size, and hence susceptibility to adverse environmental conditions, at the time when they migrate to the sea or lakes. 3At the population level no effect of fecundity on variability was found, in contrast to findings for marine fishes, nor of egg size. Whereas substantial differences in the temporal stability of environmental factors among geographically close populations may over-ride any effects of fecundity or egg size in fresh water, this is less likely in the marine environment where spatial autocorrelations of environmental variability are more pronounced. 4Variation in population sizes was related positively to the duration of time-series when using standard deviations of ln-transformed population estimates, and also when using linearly detrended population variation, suggesting non-linear long-term abundance trends in salmon populations that extend beyond the 7-year period of the shortest time-series. 5When controlling for differences among species, stability increased with increasing population size, and it is hypothesized that this is due to large populations having a more complex spatial and genetic structure than small populations due to wider spatial distribution. The effects of population size on stability, as well as differences in stability among species, suggest that population- and organism-specific characteristics may interact with exogenous forces to shape salmon population dynamics. [source] Diet reconstruction and historic population dynamics in a threatened seabirdJOURNAL OF APPLIED ECOLOGY, Issue 4 2007D. RYAN NORRIS Summary 1For the overwhelming majority of species, we lack long-term information on the dynamics of populations. As a consequence, we face considerable uncertainty about how to discriminate among competing hypotheses of population decline and design conservation plans. 2The marbled murrelet Brachyramphus marmoratus is a small seabird that nests in coastal old-growth forest but feeds year-round in near-shore waters of the north-eastern Pacific. Although a decline in nesting habitat is the primary reason why marbled murrelets are listed as threatened in Canada, nest predation and food availability may also influence population abundance. To examine the hypothesis that murrelet populations are influenced by variation in diet quality, we analysed stable-carbon and -nitrogen isotopes in feathers of museum specimens collected in the Georgia Basin, British Columbia. 3Between 1889 and 1996, we found a decline in stable isotopic signatures that was approximately equal to a 62% drop in trophic feeding level. We also found that the estimated proportion of fish in murrelet diet was related closely to murrelet abundance over the past 40 years, as estimated from volunteer surveys. Using these isotopic data, we modelled population size as a function of variation in reproductive rate due to changes in diet quality and found that our model matched closely the 40-year field estimates. We then applied our 107-year isotopic record to the model to back-cast estimates of population growth rate to 1889. 4Our results suggest that, up to the 1950s, murrelet populations in the Georgia Basin were capable of growing and were probably limited by factors other than diet quality. After this period, however, our results imply that murrelets were often, but not solely, limited by diet quality. 5Synthesis and applications. Protecting nesting habitat may not be sufficient to rebuild populations of this highly secretive and threatened seabird and recovery might also require the restoration of marine habitat quality, as well as a better understanding of how ocean climate affects prey abundance and reproductive rate. Combined with contemporary demographic data, stable isotope analysis of historic samples provides a unique opportunity to reconstruct population histories for species where we lack long-term information. [source] Habitat selection by juvenile Atlantic salmon: the interaction between physical habitat and abundanceJOURNAL OF FISH BIOLOGY, Issue 4 2005R. D. Hedger The effect of physical river habitat variables on the distribution of juvenile Atlantic salmon Salmo salar L. in the Rivière de la Trinité, Québec, Canada, was examined using generalized additive modelling. A survey of Atlantic salmon fry and parr densities and habitat variables (flow velocity, water column depth and substratum size) was conducted in the summer months from 1984 to 1992. Clear patterns of habitat use existed: specific ranges of habitat variables were selected, with parr preferring greater velocities, depths and substratum sizes than fry. There was a large variation, however, in juvenile densities for given velocities, depths or substratum sizes, with this variation being greatest in optimal habitats. On examination of an individual year, interaction between the variables was found to explain some of the variation. On a year-to-year basis the juvenile Atlantic salmon population was found to exhibit an ,Ideal Free Distribution', which resulted in greatest variation in optimal habitats with year-to-year changes in population abundance. [source] Moon phase and nocturnal density of Atlantic salmon parr in the Sainte-Marguerite River, QuébecJOURNAL OF FISH BIOLOGY, Issue 1 2005I. Imre Nocturnal underwater counts of Atlantic salmon Salmo salar parr were made on four consecutive occasions (two lunar cycles, samplings at both the full and new moon) at four 40 m long sites in the Sainte-Marguerite River, Québec, Canada, between 30 June and 14 August 2003. Atlantic salmon parr counts did not differ significantly between moon phases. Cloud cover ranged from 0 to 100% during the study, and had no significant effect on parr counts. There were significantly more Atlantic salmon parr in the near shore than in the midstream areas. The findings of this study suggest that the sampling strategy of summer studies aimed at assessing population abundance or developing habitat quality models can be designed without taking moon phase or cloud cover into consideration, but it should account for the higher relative abundance of Atlantic salmon parr in the near shore areas as compared to areas closer to the middle of streams. [source] Status, habitat use, and vulnerability of the European ggrayling in Austrian watersJOURNAL OF FISH BIOLOGY, Issue 2001F. Uiblein The European grayling Thymallus thymallus is widely distributed in Austria, occurring in all eight rural provinces. However, in recent years, an increasing number of studies report severe declines in population sizes. Since 1997, the grayling has had the status of an endangered species in Austria. In 1997 the multidisciplinary research programme ,Local Adaptation, Threat, and Conservation of European Grayling' has carried out three projects in Upper Austria, Salzburg, and Carinthia. Research has included repeated electro-fishing in selected stretches of eight rivers and the collection of data on habitat characteristics, fish species composition, population abundance and size distribution, growth and body condition, as well reproductive timing, and migratory activities of grayling. Furthermore, genetic and morphological variation among grayling populations has been studied as well as the number, habitat use and feeding activity of cormorants. Evidence is provided for the existence of distinct negative effects caused by single factors or combinations of factors on grayling stocks in each of the river stretches studied. [source] Critical habitat during the transition from maternal provisioning in freshwater fish, with emphasis on Atlantic salmon (Salmo salar) and brown trout (Salmo trutta)JOURNAL OF ZOOLOGY, Issue 4 2006J. D. Armstrong Abstract In freshwater fish, the transition from dependence on maternal yolk reserves to independent foraging can be an early critical period, with survival during this stage having a strong influence on population abundance and cohort strength. Information concerning Atlantic salmon Salmo salar and brown trout Salmo trutta as model species is reviewed to show how population dynamics are influenced by habitat use during the transitional stage and illustrate the role of maternal provisioning along with density-dependent and -independent factors. The allocation of resources in yolk and timing and position of spawning strongly influence the biotic and abiotic environments of juveniles and their subsequent performance. Vulnerability to predators, adverse environmental conditions and restricted conditions over which they can successfully forage result in specific habitat requirements for newly independent juveniles. The availability of slow-flowing habitats at stream margins during the first month of independence is crucial. Alteration of natural flow regimes and physical habitat structure, associated with a wide range of anthropogenic influences, can have significant deleterious effects on the availability of critical juvenile habitat. A model combining habitat structure and the relationship between density-dependent and -independent mortality is presented to explore the range of conditions under which the transitional period would have a strong influence on population abundance. This model provides a framework for establishing thresholds or optima for habitat availability that will favour sufficient recruitment out of the transitional stage. Using the modelling framework, managers can make informed decisions on the utility and cost effectiveness of fisheries and habitat management activities designed to increase juvenile survival during the transition to independence. A range of management options is outlined for improving habitat quality and increasing juvenile survival during the transitional period, including restoration of structural complexity, provision of suitable flow regimes, and tailoring stocking and reintroduction strategies to mimic natural dynamics. [source] Identifying environmental signals from population abundance data using multivariate time-series analysisOIKOS, Issue 11 2009Masami Fujiwara Individual organisms are affected by various natural and anthropogenic environmental factors throughout their life history. This is reflected in the way population abundance fluctuates. Consequently, observed population dynamics are often produced by the superimposition of multiple environmental signals. This complicates the analysis of population time-series. Here, a multivariate time-series method called maximum autocorrelation factor analysis (MAFA) was used to extract underlying signals from multiple population time series data. The extracted signals were compared with environmental variables that were suspected to affect the populations. Finally, a simple multiple regression analysis was applied to the same data set, and the results from the regression analysis were compared with those from MAFA. The extracted signals with MAFA were strongly associated with the environmental variables, suggesting that they represent environmental factors. On the other hand, with the multiple regression analysis, one of the important signals was not identifiable, revealing the shortcoming of the conventional approach. MAFA summarizes data based on their lag-one autocorrelation. This allows the identification of underlying signals with a small effect size on population abundance during the observation. It also uses multiple time series collected in parallel; this enables us to effectively analyze short time series. In this study, annual spawning adult counts of Chinook salmon at various locations within the Klamath Basin, California, were analyzed. [source] Interactions between habitat quality and connectivity affect immigration but not abundance or population growth of the butterfly, Parnassius smintheusOIKOS, Issue 10 2009Stephen F. Matter Habitat geometry has been a primary focus in studies of spatially structured systems. Recent studies have indicated that a more comprehensive approach including habitat quality may be needed, however most previous studies have neglected potential interactions between quality and geometry. We investigated the effects of habitat quality for the butterfly Parnassius smintheus among a series of 17 sub-populations. Specifically, we examined how habitat connectivity and local nectar flower density affect dispersal, and local population abundance and growth. We first determined which flower species were potentially important by examining nectar flower electivity and then quantified nectar flower density in meadows over a five year period (2003,2007). These data along with meadow connectivity were compared to local population statistics derived from mark,recapture over the same time period. The number of immigrants to a meadow increased as meadow connectivity increased, but showed no direct relationship with nectar flower density; however, there was a significant interaction between meadow connectivity and nectar flower density such that meadows with high connectivity and a high density of nectar flowers received the greatest number of immigrants. The number of emigrants from a meadow increased with increasing habitat quality and connectivity, but showed no interactive effect. The abundance of butterflies increased with meadow connectivity, but showed no relationship with habitat quality or any interactive effect. Separate experiments showed that access to nectar flowers significantly increased female reproductive output, but not lifespan. Despite the effects on immigration and reproductive output, local population growth rates also showed no relationship to nectar flower density. Our results indicate that habitat quality can be important for immigration in spatially structured populations; however, effects of habitat quality may not necessarily translate into higher abundance or population growth. Additionally, habitat quality should not be considered independently from habitat isolation, particularly if it directly affects dispersal. Preserving or augmenting habitat quality will do little to bolster immigration or colonization without adequate connectivity. [source] Susceptibility of field populations of adult Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Eretmocerus sp (Hymenoptera: Aphelinidae) to cotton insecticides in Burkina Faso (West Africa)PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 1 2003Lenli C Otoidobiga Abstract Research was conducted in 14 cotton fields (3,10,ha) selected in seven localities (two fields per locality) in Burkina Faso, with the objectives of: (1) estimating Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) population abundance, (2) assessing the levels of parasitism by Encarsia spp and Eretmocerus spp (Hymenoptera: Aphelinidae) and (3) estimating the susceptibilities of the pest and of an Eretmocerus sp to the insecticides currently sprayed on cotton. Yellow sticky cards and a leaf-turning technique were used to estimate adult B tabaci population densities. Yellow sticky cards were also used to estimate the densities of adult Eretmocerus sp and the susceptibilities of B tabaci to insecticides. Leaf disk techniques were used to estimate B tabaci red eye nymph populations and parasitism by Encarsia spp and Eretmoceus spp was evaluated using stereo-microscopy. A leaf cage technique was used to estimate the susceptibilities of Eretmocerus sp to insecticides. A mean of 6.5,27.4 adult B tabaci were trapped per yellow sticky card and 5.5 to >34.9 were counted per leaf using the leaf turning technique. There were 0.14,13 Eretmocerus sp trapped per yellow sticky card. The levels of parasitism varied between 36 and 87% by the end of the season and parasitism by Eretmocerus sp predominated in most of the fields. The susceptibilities of B tabaci and Eretmocerus sp varied from field to field and with the insecticide tested. © 2002 Society of Chemical Industry [source] Distribution and abundance of sacred monkeys in Igboland, southern NigeriaAMERICAN JOURNAL OF PRIMATOLOGY, Issue 7 2009Lynne R. Baker Abstract Although primates are hunted on a global scale, some species are protected against harassment and killing by taboos or religious doctrines. Sites where the killing of sacred monkeys or the destruction of sacred groves is forbidden may be integral to the conservation of certain species. In 2004, as part of a distribution survey of Sclater's guenon (Cercopithecus sclateri) in southern Nigeria, we investigated reports of sacred monkeys in the Igbo-speaking region of Nigeria. We confirmed nine new sites where primates are protected as sacred: four with tantalus monkeys (Chlorocebus tantalus) and five with mona monkeys (Cercopithecus mona). During 2004,2006, we visited two communities (Akpugoeze and Lagwa) previously known to harbor sacred populations of Ce. sclateri to estimate population abundance and trends. We directly counted all groups and compared our estimates with previous counts when available. We also estimated the size of sacred groves and compared these with grove sizes reported in the literature. The mean size of the sacred groves in Akpugoeze (2.06,ha, n=10) was similar to others in Africa south of the Sahel, but larger than the average grove in Lagwa (0.49,ha, n=15). We estimated a total population of 124 Sclater's monkeys in 15 groups in Lagwa and 193 monkeys in 20 groups in Akpugoeze. The Akpugoeze population was relatively stable over two decades, although the proportion of infants declined, and the number of groups increased. As Sclater's monkey does not occur in any official protected areas, sacred populations are important to the species' long-term conservation. Despite the monkeys' destruction of human crops, most local people still adhere to the custom of not killing monkeys. These sites represent ideal locations in which to study the ecology of Sclater's monkey and human,wildlife interactions. Am. J. Primatol. 71:574,586, 2009. © 2009 Wiley-Liss, Inc. [source] Striking a balance between retaining populations of protected seahorses and maintaining swimming netsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010David Harasti Abstract 1.The fish family Syngnathidae (seahorses, pipefish, pipehorses and seadragons) is fully protected in New South Wales, Australia, but in some countries certain species are threatened by unsustainable collecting, capture as incidental bycatch, and habitat degradation. 2.Within Sydney Harbour, two species of seahorses (Hippocampus abdominalis and Hippocampus whitei) have been found to colonize artificial structures such as jetty pylons and protective netted swimming enclosures. These protective nets are subject to fouling from epibiotic growth (algae, ascidians, bryozoans, etc.) and rubbish, which causes the nets to collapse from the additional weight. Local authorities employ diving contractors on an ad hoc basis to remove the epibiota from nets. 3.Surveys showed a significant decline in the numbers of both seahorse species at one site following the replacement of a net, and recovery of the H. whitei population took more than 15 months. 4.A manipulative experiment tested the importance of epibiotic growth for seahorses. H. whitei, tagged with individual marks, were allocated to sections of a net that had undergone different cleaning procedures. Seahorse size, position on the net and total population abundance were recorded every 2 weeks over a 3 month period. It was demonstrated that seahorses have a significant positive association with epibiotic growth and proximity to the sea floor. Seahorse populations also showed seasonal variation in abundance with increased numbers on the net during the breeding season (spring,summer). 5.This project has led to the development of best practice net cleaning procedures for local authorities in Sydney Harbour to manage growth on the nets while minimizing impacts on seahorse populations. Copyright © 2009 John Wiley & Sons, Ltd. [source] Harvest, trade and conservation of the Asian arowana Scleropages formosus in CambodiaAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 7 2008Jodi J. L. Rowley Abstract 1.The worldwide trade in aquarium fish is a multi-billion dollar industry. One of the most popular and expensive species traded is the Asian arowana Scleropages formosus. As a result of over-harvesting for the aquarium fish trade, S. formosus is now endangered and commercial international trade in the species is prohibited under CITES. Despite this, very little is known about S. formosus in the wild. 2.Interviews were conducted with 62 local villagers at four sites in Koh Kong province, south-west Cambodia, to obtain information on the reproduction, historical and current harvest and trade, and population trends of S. formosus. 3.The spawning season of S. formosus in Cambodia begins towards the end of the dry season (March,April) and is approximately 3 months in duration. Each male mouth-broods an average of 30 juveniles. Harvesters target S. formosus fry and juveniles, and typically kill or frighten brooding males into releasing their offspring in order to harvest them. 4.The prices obtained by harvesters for S. formosus has been increasing since collection began, and currently averages $US11,13 per juvenile. After collection, fish are transported through a series of larger towns, most ultimately bound for Thailand. The current number of S. formosus harvested from the wild in Cambodia is almost certainly highly unsustainable, with all respondents indicating that local S. formosus population abundance had declined dramatically in recent years. It is also likely that a number of populations have already become locally extinct. 5.Strengthening legislation to protect the species within Cambodia, increasing enforcement of cross-border trade, and an investigation into alternative low-impact income generation opportunities for local communities is vital. There is also an urgent need to gather detailed information on the distribution, population abundance and threats facing S. formosus in Cambodia, and in other countries throughout its range. Copyright © 2008 John Wiley & Sons, Ltd. [source] Spatial variation in abundance of the junin virus hosts in endemic and nonendemic Argentine haemorrhagic fever zonesAUSTRAL ECOLOGY, Issue 3 2007JAIME POLOP Abstract Argentine haemorrhagic fever (AHF) is caused by Junin (JUN) virus, which is hosted by the drylands vesper mouse (Calomys musculinus). In this work we monitored population abundance of C. musculinus and rodent assemblages for 3 years in and outside the AHF endemic zones (northern Buenos Aires, southern Córdoba and Santa Fe Provinces, Argentina). The study area was divided into endemic and nonendemic zones. In the endemic zone epidemic sites were recognized, characterized by recent emergence and maintenance of AHF cases, and also historical sites, characterized by decreased incidence or disappearance of AHF human cases. In the nonendemic zone AHF has never been recognized. Although differences were statistically significant only during some periods, population abundance of C. musculinus was usually lower in the nonendemic sites. The pattern and magnitude of seasonal fluctuations in C. musculinus populations were also distinct in the nonendemic sites as compared to endemic sites. The relative abundance of C. musculinus in rodent assemblage was lower in nonendemic sites than in the endemic sites. The lower population densities and dampened seasonal dynamics may be at least partly responsible for the absence of AHF cases in the nonendemic zone. It is suggested that the balance between intra and interspecific interactions might be the cause of the pattern of incidence and prevalence of pathogens in the host species. [source] MULTIPLE-RECORD SYSTEMS ESTIMATION USING LATENT CLASS MODELSAUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, Issue 1 2009Yan Wang Summary Capture,recapture methods (also referred to as ,multiple-record systems') have been widely used in enumerating human populations in the fields of epidemiology and public health. In this article, we introduce latent class models into multiple-record systems to account for unobserved heterogeneity in the population. Two approaches, the full and the conditional likelihood, are proposed to estimate the unknown population abundance. We also suggest rules to diagnose identifiability of the proposed latent class models. The methodologies are illustrated by two real examples: the first is to count the undercount of homelessness in the Adelaide central business district, and the second concerns the incidence of diabetes in a small Italian town. [source] The seasonal phenology of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) in QueenslandAUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 3 2010Sakuntala Muthuthantri Abstract Bactrocera tryoni is a polyphagous fruit fly, originally endemic to tropical and subtropical coastal eastern Australia, but now also widely distributed in temperate eastern Australia. In temperate parts of its range, B. tryoni populations show distinct seasonal peaks driven by changing seasonal climates, especially changing temperature. In contrast to temperate areas, the seasonal phenology of B. tryoni in subtropical and tropical parts of its range is poorly documented and the role of climate unknown. Using a large, historical (1940s and 1950s) fruit fly trapping dataset, we present the seasonal phenology of B. tryoni at nine sites across Queensland for multiple (two to seven) years per site. We correlate monthly trap data for each site with monthly weather averages (temperature, rainfall and relative humidity) to investigate climatic influences. We also correlate observed population data with predicted population data generated by an existing B. tryoni population model. Supporting predictions from climate driven models, B. tryoni did show year-round breeding at most Queensland sites. However, contrary to predictions, there was a common pattern of a significant population decline in autumn and winter, followed by a rapid population increase in August and then one or more distinct peaks of abundance in spring and summer. Mean monthly fly abundance was significantly different across sites, but was not correlated with altitudinal, latitudinal or longitudinal gradients. There were very few significant correlations between monthly fly population size and weather variables (either for the corresponding month or for up to 3 months previously) for eight of the nine sites. For the southern site of Gatton fly population abundance was correlated with temperature. Results suggest that although climate factors may be influencing patterns of B. tryoni population abundance in southern subtropical Queensland, they are not explaining patterns of abundance in northern subtropical and tropical Queensland. In the discussion we focus on the role of other factors, particularly larval host plant availability, as likely drivers of B. tryoni abundance in tropical and subtropical parts of its range. [source] Measurement Error in a Random Walk Model with Applications to Population DynamicsBIOMETRICS, Issue 4 2006John Staudenmayer Summary Population abundances are rarely, if ever, known. Instead, they are estimated with some amount of uncertainty. The resulting measurement error has its consequences on subsequent analyses that model population dynamics and estimate probabilities about abundances at future points in time. This article addresses some outstanding questions on the consequences of measurement error in one such dynamic model, the random walk with drift model, and proposes some new ways to correct for measurement error. We present a broad and realistic class of measurement error models that allows both heteroskedasticity and possible correlation in the measurement errors, and we provide analytical results about the biases of estimators that ignore the measurement error. Our new estimators include both method of moments estimators and "pseudo"-estimators that proceed from both observed estimates of population abundance and estimates of parameters in the measurement error model. We derive the asymptotic properties of our methods and existing methods, and we compare their finite-sample performance with a simulation experiment. We also examine the practical implications of the methods by using them to analyze two existing population dynamics data sets. [source] The implicit assumption of symmetry and the species abundance distributionECOLOGY LETTERS, Issue 2 2008David Alonso Abstract Species abundance distributions (SADs) have played a historical role in the development of community ecology. They summarize information about the number and the relative abundance of the species encountered in a sample from a given community. For years ecologists have developed theory to characterize species abundance patterns, and the study of these patterns has received special attention in recent years. In particular, ecologists have developed statistical sampling theories to predict the SAD expected in a sample taken from a region. Here, we emphasize an important limitation of all current sampling theories: they ignore species identity. We present an alternative formulation of statistical sampling theory that incorporates species asymmetries in sampling and dynamics, and relate, in a general way, the community-level SAD to the distribution of population abundances of the species integrating the community. We illustrate the theory on a stochastic community model that can accommodate species asymmetry. Finally, we discuss the potentially important role of species asymmetries in shaping recently observed multi-humped SADs and in comparisons of the relative success of niche and neutral theories at predicting SADs. [source] Effects of climatic change on the phenology of butterflies in the northwest Mediterranean BasinGLOBAL CHANGE BIOLOGY, Issue 10 2003Constantí Stefanescu Abstract Phenological changes in response to climatic warming have been detected across a wide range of organisms. Butterflies stand out as one of the most popular groups of indicators of climatic change, given that, firstly, they are poikilothermic and, secondly, have been the subject of thorough monitoring programmes in several countries for a number of decades. Here we provide for the first time strong evidence of phenological change as a consequence of recent climatic warming in butterflies at a Spanish site in the northwest Mediterranean Basin. By means of the widely used Butterfly Monitoring Scheme methodology, three different phenological parameters were analysed for the most common species to test for trends over time and relationships with temperature and precipitation. Between 1988 and 2002, there was a tendency for earlier first appearance dates in all 17 butterfly species tested, and significant advances in mean flight dates in 8 out of 19 species. On the other hand, the shape of the curve of adult emergence did not show any regular pattern. These changes paralleled an increase of 1,1.5°C in mean February, March and June temperatures. Likewise, a correlation analysis indicated the strong negative effect of spring temperature on phenological parameters (i.e. higher temperatures tended to produce phenological advances), and the opposite effect of precipitation in certain months. In addition, there was some evidence to indicate that phenological responses may differ between taxonomic lineages or species with similar diets. We discuss the consequences that these changes may have on species' population abundances, especially given the expected increase in aridity in the Mediterranean Basin caused by current climatic warming. We predict that varying degrees of phenological flexibility may account for differences in species' responses and, for multivoltine species, predict strong selection favouring local seasonal adaptations such as diapause phenomena or migratory behaviour. [source] |