Popular Techniques (popular + techniques)

Distribution by Scientific Domains


Selected Abstracts


A comparison of the presumptive luminol test for blood with four non-chemiluminescent forensic techniques

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 4 2006
Joanne L. Webb
Abstract Presumptive blood detection tests are used by forensic investigators to detect trace amounts of blood or to investigate suspicious stains. Through the years, a number of articles have been published on the popular techniques of the day. However, there is no single paper that critiques and compares the five most common presumptive blood detection tests currently in use: luminol, phenolphthalein (Kastle,Meyer), leucomalachite green, Hemastix® and the forensic light source. The present authors aimed to compare the above techniques with regard to their sensitivity, ease of use and safety. The luminol test was determined to be the most sensitive of the techniques, while Hemastix® is a suitable alternative when the luminol test is not appropriate. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Principles of QSAR models validation: internal and external

MOLECULAR INFORMATICS, Issue 5 2007
Paola Gramatica
Abstract The recent REACH Policy of the European Union has led to scientists and regulators to focus their attention on establishing general validation principles for QSAR models in the context of chemical regulation (previously known as the Setubal, nowadays, the OECD principles). This paper gives a brief analysis of some principles: unambiguous algorithm, Applicability Domain (AD), and statistical validation. Some concerns related to QSAR algorithm reproducibility and an example of a fast check of the applicability domain for MLR models are presented. Common myths and misconceptions related to popular techniques for verifying internal predictivity, particularly for MLR models (for instance cross-validation, bootstrap), are commented on and compared with commonly used statistical techniques for external validation. The differences in the two validating approaches are highlighted, and evidence is presented that only models that have been validated externally, after their internal validation, can be considered reliable and applicable for both external prediction and regulatory purposes. [source]


Temporal disaggregation by state space methods: Dynamic regression methods revisited

THE ECONOMETRICS JOURNAL, Issue 3 2006
Tommaso Proietti
Summary, The paper advocates the use of state space methods to deal with the problem of temporal disaggregation by dynamic regression models, which encompass the most popular techniques for the distribution of economic flow variables, such as Chow,Lin, Fernández and Litterman. The state space methodology offers the generality that is required to address a variety of inferential issues that have not been dealt with previously. The paper contributes to the available literature in three ways: (i) it concentrates on the exact initialization of the different models, showing that this issue is of fundamental importance for the properties of the maximum likelihood estimates and for deriving encompassing autoregressive distributed lag models that nest exactly the traditional disaggregation models; (ii) it points out the role of diagnostics and revisions histories in judging the quality of the disaggregated estimates and (iii) it provides a thorough treatment of the Litterman model, explaining the difficulties commonly encountered in practice when estimating this model. [source]


Some remarks on characterization and application of stationary phases for RP-HPLC determination of biologically important compounds

BIOMEDICAL CHROMATOGRAPHY, Issue 1 2006
Sylwia Kowalska
Abstract Biologically active compounds such as vitamins, steroids, nucleosides, peptides and proteins play a very important role in coordinating living organism functions. Determination of those substances is indispensable in pathogenesis. Their complex structure and physico-chemical properties cause many analytical problems. Chromatography is the most common technique used in pharmaceutical and biomedical analysis. The interaction between analyte and stationary phase plays a major role in the separation process. The structure of the packing has a significant influence on the results of the separation process. Various types of spectroscopic techniques, such as nuclear magnetic resonance spectroscopy, infrared spectroscopy, fluorescence spectroscopy and photoacoustic spectroscopy can be useful tools for the characterization of packings. Surface area measurements, elemental analysis, thermal analysis and microcalorimetric measurements are also helpful in this field. Part of the paper contains a description of chromatographic tests used for the determination of column properties. The description of the possibilities of surface characterization is not complete, but is focused on the most popular techniques and practical chromatographic tests. All the presented methods made possible the design and quality control of a new generation stationary phases, which are the future of high-performance liquid chromatography. Copyright © 2005 John Wiley & Sons, Ltd. [source]