Home About us Contact | |||
Polyurethane Copolymers (polyurethane + copolymer)
Selected AbstractsStructure and properties of cross-linked polyurethane copolymersADVANCES IN POLYMER TECHNOLOGY, Issue 3 2009S. Oprea Abstract Polyurethane elastomers based on polyester diols and aromatic or aliphatic diisocyanates can be used as vibration dampers and isolation materials. Two series of cross-linked polyurethanes with various hard segment structures and different amounts were prepared and thermomechanical properties of these materials were studied. Cross-linked polyurethane copolymers composed of poly(ethylene adipate)diol as soft segment and 4,4,-methylenebis(phenylisocyanate), 1,6-hexamethylene diisocyanate, and diols glycerin, 1,4-butanediol, and 1,6-hexanediol as hard segments were synthesized by a two-step process. The networks have been prepared by end-linking a mixture of the bifunctional precursor chains with trifunctional cross-linkers at off-stoichiometric ratios. The results show that the cross-link and the polyurethane hard segment interaction play a special role in the interconnected chain density and its magnitude is revealed by the mechanical properties. Of most importance, maximum stress, tensile modulus, and elongation at break increased significantly at the 22 wt % composition of hard segment content. Interchain cross-linking improves thermal stability, which was measured by thermogravimetric analysis and differential scanning calorimetry. Cross-linked polyurethane behaves as an elastomer and is useful for shock, noise, and vibration control. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:165,172, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20155 [source] Synthesis and morphology transformation of amphiphilic diblock polyurethane copolymers in aqueous solutionPOLYMER INTERNATIONAL, Issue 8 2010Qing Miao Abstract Amphiphilic block copolymers possess both hydrophobic and hydrophilic properties and can form versatile micellar structures in aqueous solution. The aim of the research presented was to prepare a series of non-ionic amphiphilic diblock polyurethane copolymers (PUn) based on isophorone diisocyanate, monoallyl-end-capped poly(ethylene oxide) and poly(propylene oxide) (PPO), followed by an investigation of their micellization properties and morphology transformation in aqueous solution. The PUn samples were synthesized by condensation polymerization. These polyurethanes exhibit surface tension as low as 33.7,37.0 mN m,1. There is an obvious decrease in critical micelle concentration as the hydrophobic PPO molecular weight increases. According to transmission electron microscopy, the morphology of aggregates of the copolymers can be tuned by varying the concentration in aqueous solution rather than organic solvent. For example, for PU7, large compound micelles are produced instead of vesicles. For PU17, the concentration can be used to control the size and thickness of vesicles. Vesicle size increases from 60 to 500 nm and vesicle thickness from 40 to 60 nm with concentration ranging from 0.003 to 0.03 wt%. The study shows that the copolymers in aqueous solution have excellent surface activities. In addition, they can self-assemble into large compound micelles or vesicles at certain concentrations. Moreover, the synthesis method described allows one to obtain a desired morphology of aggregates by adjusting the composition of hydrophilic and hydrophobic segments, which provides a novel and simple way to obtain particles on the nanometer scale. Copyright © 2010 Society of Chemical Industry [source] Moisture-cured polyurethane/polysiloxane copolymers: Effects of the structure of polyester diol and NCO/OH ratioJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Hongmei Jiang Abstract Moisture-cured polyurethane is one of the commercially important polymers, which is widely used in sealants, coatings, and reactive hot-melt adhesives. A series of moisture-cured polyurethane/polysiloxane (PUSR) copolymers were successfully prepared using a two-step solution polymerization procedure. Both amine-terminated polysiloxane (PDMS) and polyester diol were together used as mixed soft segments to react with 4,4,-diphenlymethane diisocyanate (MDI), and the alkoxysilane was used as end-capping agents. The effects of structure variation of building blocks such as the polyester diol structure and NCO/OH ratio on the properties and morphology of PUSR copolymers were studied. The tensile properties, dielectric behavior, thermal stability, surface, and water-repellency properties were investigated. The results showed that the properties and morphology of PUSR copolymers were greatly affected by the variations in molecular architecture. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] |