Home About us Contact | |||
Polyphenylene Oxide (polyphenylene + oxide)
Selected AbstractsReactively and physically compatibilized immiscible polymer blends: stability of the copolymer at the interfaceMACROMOLECULAR SYMPOSIA, Issue 1 2003Charef Harrats Abstract This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes. [source] Flame retardancy and toughening of high impact polystyrenePOLYMER COMPOSITES, Issue 4 2007Wenguang Cui Flame retardant high impact polystyrene (HIPS) was prepared by melt blending HIPS, nano-modified aluminum trihydrate (nano-CG-ATH), red phosphorus masterbatch (RPM), and modified polyphenylene oxide (MPPO). Styrene-butadiene-styrene (SBS) was used as a toughener in this research. The effects of nano-CG-ATH, RPM, MPPO, and SBS on properties of HIPS composites were studied by combustion test, mechanical tests, and thermogravimetric analysis. The morphologies of fracture surfaces and char layers were characterized through scanning electron microscopy (SEM). The HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25) composite and its combustion residues at various temperatures were characterized by Fourier transform infrared (FTIR) spectra analysis. The results showed that the UL-94 rating of the HIPS/nano-CG-ATH/RPM/MPPO (60/6/9/25) composite reached V-0 and its char layer after flame test was integrated, but its impact strength was low. Addition of SBS improved its impact property and did not influence its thermal and flame retardant properties but lowered its tensile strength and flexural modulus to some extent. The FTIR spectra confirmed that the POC group was present in the charred substance. POLYM. COMPOS., 28:551,559, 2007. © 2007 Society of Plastics Engineers [source] Tensile properties and damage behaviors of glass-bead-filled modified polyphenylene oxide under large strainPOLYMER COMPOSITES, Issue 6 2001C. P. Tsui Based on Continuum Damage Mechanics (CDM), a damage model for glass-bead-filled modified polyphenylene oxide (GB/PPO) has been proposed to describe its damage behavior at various levels of tensile strain by considering the reduction of effective loading area. Hence, an equation for prediction of effective elastic modulus of the damaged GB/PPO composites in terms of the three principal true strains was derived. The tensile properties and damage behaviors of the GB/PPO composites with different volume percentages of glass beads were investigated using standard tensile tests and load-unload tests, respectively. The addition of glass beads increases Young's modulus of PPO but has a weakening effect on its tensile strength. A maximum value of tensile work to break and tensile strain at break was found when 5 vol% of glass beads with a mean diameter of 11 ,m was blended with PPO. These results were justified through microscopic examination of the fracture surfaces of the tensile specimens by using a scanning electron microscope (SEM). In - situ observations of the strain damage processes were made through the SEM equipped with a tensile stage to determine the strain at fully debonding of glass beads. The volumetric strain of GB/PPO composites increases because of microcavitation during strain damage. In general, the prediction for the effective elastic modulus of the damaged GB/PPO composites at different true strains is slightly higher than the experimental results. The damage evolution rates after fully debonding of glass beads from the matrix are close to those predicted by the proposed damage model. [source] Photodegradation mechanism and stabilization of polyphenylene oxide and rigid-rod polymersPOLYMER INTERNATIONAL, Issue 2 2006Ying-Hung So Abstract Poly(2,4-dimethyl-1,4-phenylene oxide) (PPO), poly(benzo[1,2- d:5,4- d,]bisoxazole-2,6-diyl-1,4-phenylene) (PBO) and poly(benzo[1,2- d:4,5- d,]bisthiazole-2,6-diyl-1,4-phenylene) (PBZT), which are polymers with extended conjugated structures, undergo a self-sensitized photo-induced electron-transfer reaction. A second component is not required. This article presents many similar observations on these polymers when they are exposed to light and evidence to support the proposed photo-induced electron-transfer mechanism. Methods to stabilize these polymers against photo-oxidation are also described. Workers investigating other conjugated polymeric systems may find the experimental methods, observations and polymer stabilization approaches discussed in this review useful. Copyright © 2005 Society of Chemical Industry [source] |