Home About us Contact | |||
Polyolefins
Terms modified by Polyolefins Selected AbstractsNitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and qualityJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2008Dr Wen-Yan Han Abstract BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a perennial leaf harvested crop. It requires more nitrogen than most other crops and preferentially utilises NH4+ to NO3, when both are available in the soil. It is expected that slow release fertilisers coupled with a nitrification inhibitor could improve the N use efficiency and simultaneously reduce environmental pollution. In this study, three slow release fertilisers were developed and tested: CaMg phosphate coated urea with dicyandiamide (DCD) as a nitrification inhibitor and polyolefin coated urea with and without DCD. The main aim was to compare the nitrogen release dynamics and transformation of these fertilisers and their effects on tea yield and quality. RESULTS: The results showed that the coatings significantly slowed N release and kept mineral N in soils at a higher concentration for a longer time compared to uncoated urea. Polyolefin was a superior coating to CaMg phosphate. DCD was an effective nitrification inhibitor and significantly reduced the ratio of nitrate to total mineral N in a highly acidic tea soil. The 15N use efficiency was 29% where uncoated fertiliser was applied and 46% where polyolefin coated fertiliser with DCD was applied. The application of slow release fertilisers increased the chlorophyll content in mature leaves and enhanced the uptake of mineral elements by tea plants. Bud sprouting, shoot growth and mature leaf longevity were significantly improved, resulting in higher biomass of tea plants. Slow release fertilisers increased the yield of shoots by 51,143% (mean, 106%) in a pot experiment and 4,14% (mean, 9%) in a field experiment compared to uncoated urea. Tea quality parameters, especially free amino acids, were also significantly increased. CONCLUSION: Slow release fertilisers, especially polyolefin coated urea with DCD could significantly increase the N use efficiency and improve tea growth. Their uses in tea fields not only improved the profit margin, but possibly reduced environmental pollution. Copyright © 2008 Society of Chemical Industry [source] Effect of Processing Parameters on the Mechanical Properties of Injection Molded Thermoplastic Polyolefin (TPO) Cellular FoamsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 7 2008Steven Wong Abstract In this study, the effects of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) foams are investigated. Closed cell TPO foams were prepared by injection molding process. The microstructure of these foamed samples was controlled by carefully altering the processing parameters on the injection molding machine. The foam morphologies were characterized in terms of skin thickness, surface roughness, and relative foam density. Tensile properties and impact resistance of various injection molded TPO samples were correlated with various foam morphologies. The findings show that the mechanical properties are significantly affected by foam morphologies. The experimental results obtained from this study can be used to predict the microstructure and mechanical properties of cellular injection molded TPO foams prepared with different processing parameters. [source] Polyolefin: changing supply-demand framework and new technologyMACROMOLECULAR SYMPOSIA, Issue 1 2003Kissho Kitano Abstract Polyolefin industry is now under a remarkable change of international supply-demand framework and its market is splitting into commodity and high performance products. It is getting more important for a material being harmless and comfortable, while the "life cycle cost", which includes the cost during use and the recycle cost after use, is regarded as more important to evaluate a material. Those changes are accelerating the inter-material penetration. Several examples of the material design and production technologies, which responded to the changing market needs and developed new applications of polyolefin, are discussed. [source] The effect of accelerated ageing of building wiresFIRE AND MATERIALS, Issue 5 2007Viktor Emanuelsson Abstract The fire performance of two electric cables (building wires) designed for indoor use has been tested, both as new products and after accelerated thermooxidative ageing. The cables were aged for a maximum time of 16.5 weeks at 80°C. The cables are commercially available, and were constructed using a PVC material in one case and a non-halogenated polyolefin-based material, called Casico, in the other. The effects of ageing on the fire performance of the cables, and the chemical changes that have caused the observed fire behaviour, have been investigated and are discussed. Special attention is paid to the behaviour of the plasticizers that are used in the PVC cable, and how the fire behaviour is affected by the loss of plasticizers from the cable and by the migration of plasticizers between the parts of the cable (insulation, bedding and sheathing). Copyright © 2007 John Wiley & Sons, Ltd. [source] Effect of processing parameters on the cellular morphology and mechanical properties of thermoplastic polyolefin (TPO) microcellular foamsADVANCES IN POLYMER TECHNOLOGY, Issue 4 2007Steven Wong Abstract In this study, the effects of processing parameters on the cellular morphologies and mechanical properties of thermoplastic polyolefin (TPO) microcellular foams are investigated. Microcellular closed cell TPO foams were prepared using a two-stage batch process method. The microstructure of these foamed samples was controlled by carefully altering the processing parameters such as saturation pressure, foaming temperature, and foaming time. Foam morphologies were characterized in terms of the cell density, foam density, and average cell size. Elastic modulus, tensile strength, and elongation at break of the foamed TPO samples were measured for different cell morphologies. The findings show that the mechanical properties are significantly affected by the foaming parameters that varied with the cell morphologies. The experimental results can be used to predict the microstructure and mechanical properties of microcellular polymeric TPO foams prepared with different processing parameters. © 2008 Wiley Periodicals, Inc. Adv Polym Techn 26:232,246, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20104 [source] Morphologies and mechanical properties of HDPE induced by small amount of high-molecular-weight polyolefin and shear stress produced by dynamic packing injection moldingJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008Zhanchun Chen Abstract To better understand the effect of a small amount of high-molecular-weight polyethylene (HMWPE) on the mechanical properties and crystal morphology under the shear stress field, the dynamic packing injection molding (DPIM) was used to prepare the oriented pure polyethylene and its blends with 4% HMWPE. The experiment substantiated that the further improvement of tensile strength along the flow direction (MD) of high-density polyethylene (HDPE)/HMWPE samples was achieved, whereas the tensile strength along the transverse direction (TD) still substantially exceeded that of conventional molding. Tensile strength in both flow and TDs were highly enhanced, with improvements from 23 to 76 MPa in MD and from 23 to 31 MPa in TD, besides the toughness was highly improved. So, the samples of HDPE/HMWPE transformed from high strength and brittleness to high strength and toughness. The obtained samples were characterized via SEM and TEM. For HDPE/HMWPE, the lamellae of the one shish-kebab in the oriented region may be stretched into other shish-kebab structures, and one lamella enjoys two shish or even more. This unique crystal morphology could lead to no yielding and necking phenomena in the stress,strain curves of HDPE/HMWPE samples by DPIM. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Micron-granula polyolefin with self-immobilized nickel and iron diimine catalysts bearing one or two allyl groupsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2004Guoxin Jin Abstract Self-immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArNC]2(C10H6)NiBr2 [Ar = 4-allyl-2,6-(i -Pr)2C6H2] (1), [ArNC(Me)][Ar,N C(Me)]C5H3NFeCl2 [Ar = Ar, = 4-allyl-2,6-(i -Pr)2C6H3, Ar = 2,6-(i -Pr)2C6H3, and Ar, = 4-allyl-2,6-(i -Pr)2C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArNC]2C10H6NiBr2 (Ar = 2,6-(i-Pr)2C6H2)], but also greatly improved the morphology of polymer particles to afford micron-granula polyolefin. The self-immobilization of catalysts, the formation mechanism of microspherical polymer, and the influence on the size of the particles are discussed. The molecular structure of self-immobilized nickel catalyst 1 was also characterized by crystallographic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1018,1024, 2004 [source] Synthesis of new amphiphilic diblock copolymers containing poly(ethylene oxide) and poly(,-olefin)JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2002Yingying Lu Abstract This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s-PS), and elastomers, such as poly(ethylene- co -1-octene) and poly(ethylene- co -styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ,270 °C to low glass-transition temperature ,,60 °C. The chemistry involves two reaction steps, including the preparation of a borane group-terminated polyolefin by the combination of a metallocene catalyst and a borane chain-transfer agent as well as the interconversion of a borane terminal group to an anionic (O,K+) terminal group for the subsequent ring-opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of ,-olefins to the ring-opening polymerization of ethylene oxide. The well-defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416,3425, 2002 [source] Nitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and qualityJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2008Dr Wen-Yan Han Abstract BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a perennial leaf harvested crop. It requires more nitrogen than most other crops and preferentially utilises NH4+ to NO3, when both are available in the soil. It is expected that slow release fertilisers coupled with a nitrification inhibitor could improve the N use efficiency and simultaneously reduce environmental pollution. In this study, three slow release fertilisers were developed and tested: CaMg phosphate coated urea with dicyandiamide (DCD) as a nitrification inhibitor and polyolefin coated urea with and without DCD. The main aim was to compare the nitrogen release dynamics and transformation of these fertilisers and their effects on tea yield and quality. RESULTS: The results showed that the coatings significantly slowed N release and kept mineral N in soils at a higher concentration for a longer time compared to uncoated urea. Polyolefin was a superior coating to CaMg phosphate. DCD was an effective nitrification inhibitor and significantly reduced the ratio of nitrate to total mineral N in a highly acidic tea soil. The 15N use efficiency was 29% where uncoated fertiliser was applied and 46% where polyolefin coated fertiliser with DCD was applied. The application of slow release fertilisers increased the chlorophyll content in mature leaves and enhanced the uptake of mineral elements by tea plants. Bud sprouting, shoot growth and mature leaf longevity were significantly improved, resulting in higher biomass of tea plants. Slow release fertilisers increased the yield of shoots by 51,143% (mean, 106%) in a pot experiment and 4,14% (mean, 9%) in a field experiment compared to uncoated urea. Tea quality parameters, especially free amino acids, were also significantly increased. CONCLUSION: Slow release fertilisers, especially polyolefin coated urea with DCD could significantly increase the N use efficiency and improve tea growth. Their uses in tea fields not only improved the profit margin, but possibly reduced environmental pollution. Copyright © 2008 Society of Chemical Industry [source] Compatibilization of poly(vinyl chloride) with polyamide and with polyolefin by using poly(lauryllactam- random -caprolactam- block -caprolactone)JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 3 2005In Kim The compatibilization of various poly(vinyl chloride) (PVC) blends was investigated. The blend systems were PVC-polyamide 12 (PA12), PVC-polypropylene (PP), and PVC-ethylene-propylene-diene rubber (EPDM) with a new compatibilizing agent, random-block terpolymer poly(,-lauryllactam- random -,-caprolactam- block -,-caprolactone) or systems containing these copolymers. The results were compared to those obtained in previous studies using poly(,-lauryllactam- block -,-caprolactone) copolymer. The new block copolymer was specially synthesized by reactive extrusion. Observation by scanning electron microscopy (SEM) revealed that compatibilized blends had a finer morphology than the noncompatibilized blends. Addition of 10 weight percent (wt%) of block copolymer proved to be sufficient to give a significant improvement of the mechanical properties of the immiscible PVC blends at room temperature and at high temperatures that were above the glass transition temperature of PVC. For polyolefins, a three-component compatibilizing system including maleated polypropylene, polyamide 12, and block copolymer was used. It was found that poly(,-lauryllactam- random -,-caprolactam- block -,-caprolactone) was the more efficient compatibilizing agent for the modification of PVC-polyamide 12, PVC-polypropylene, and PVC-ethylene-propylene-diene rubber blends. J. VINYL. ADDIT. TECHNOL., 11:95,110, 2005. © 2005 Society of Plastics Engineers [source] Functionalization of LDPE by Melt Grafting with Glycidyl Methacrylate and Reactive Blending with Polyamide-6MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 8 2003Qian Wei Abstract Low-density polyethylene (LDPE) was functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed for reactive blending with polyamide-6 (PA6). The effect of the reaction procedure on the grafting degree of LDPE- g -GMA samples (0.5,12.5 wt.-% GMA) was analyzed as a function of the concentration of GMA monomer, radical initiator (BTP), and addition of styrene as co-monomer. Optimized grafting conditions were obtained when the amount of the monomer is below 10 wt.-% and that of peroxide in the range 0.2,0.4 wt.-%. Binary blends of PA6 with LDPE- g -GMA (3.5 wt.-% GMA) and with LDPE at various compositions (80/20, 67/33, 50/50 wt.-%) were prepared in an internal mixer and their properties were evaluated by torque, SEM and DSC analyses. Morphological examination by SEM showed a large improvement of phase dispersion and interfacial adhesion in PA6/LDPE- g -GMA blends as compared with PA6/LDPE blends. The average diameter of dispersed polyolefin particles was about 0.4 ,m for LDPE- g -GMA contents <,50 wt.-%. A marked increase of melt viscosity was observed for the compatibilized blends depending on the concentration of grafted polyolefin, and it was accounted for by the reaction between the epoxy groups of GMA and the carboxyl/amine end-groups of PA6. The variation of torque was thus related to the molar ratio of reactive group concentration. The analysis of crystallization and melting behavior pointed out marked differences in the phase structure of the blends due to the presence of the functionalized polyolefin. Finally, the in situ formation of a graft copolymer between LDPE- g -GMA and PA6 was investigated by means of a selective dissolution method (Molau test) and by FT-IR and DSC analyses. SEM micrograph of fracture surface of PA6/LDPE- g -GMA 50/50 blend. [source] Effect of Processing Parameters on the Mechanical Properties of Injection Molded Thermoplastic Polyolefin (TPO) Cellular FoamsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 7 2008Steven Wong Abstract In this study, the effects of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) foams are investigated. Closed cell TPO foams were prepared by injection molding process. The microstructure of these foamed samples was controlled by carefully altering the processing parameters on the injection molding machine. The foam morphologies were characterized in terms of skin thickness, surface roughness, and relative foam density. Tensile properties and impact resistance of various injection molded TPO samples were correlated with various foam morphologies. The findings show that the mechanical properties are significantly affected by foam morphologies. The experimental results obtained from this study can be used to predict the microstructure and mechanical properties of cellular injection molded TPO foams prepared with different processing parameters. [source] Reactive Blending of Polyamides with Different Carbonyl Containing Olefin PolymersMACROMOLECULAR MATERIALS & ENGINEERING, Issue 6 2003David Sémeril Abstract In this paper the blending of polyamides nylon 6 and nylon 12, with a perfectly alternating ethylene/CO copolymer containing 50 mol-% carbonyl groups (polyketone) is investigated in comparison to blends of the same polyamides with polyolefins containing varying degrees of carbonyl group incorporation. These include a poly[ethylene- co -(methyl acrylate)] copolymer containing 1.9 mol-% methyl ester groups and poly[ethylene- co -(ethyl undecylenate)] copolymers with between 0.20 and 1.25 mol-% ester incorporation. Blends were obtained of polyamides and the polyolefins in compositions between 20/80 and 80/20 in solution and in a Brabender mixer. SEM studies together with TGA, DSC and FTIR measurements show excellent compatibilization for both polyketone and poly[ethylene- co -(methyl acrylate)] copolymers with the nylons. The poly[ethylene- co -(ethyl undecylenate)] polymers displayed much less compatibilization although they still performed significantly better compared to pure polyethylene. The difference in compatibilization is discussed with respect to the importance of both the number of interactive groups present in the polyolefin and the steric requirements of hydrogen bond formation. SEM micrograph of the fracture surface of the blend nylon 6/polyethylene 70:30. [source] Polyolefin: changing supply-demand framework and new technologyMACROMOLECULAR SYMPOSIA, Issue 1 2003Kissho Kitano Abstract Polyolefin industry is now under a remarkable change of international supply-demand framework and its market is splitting into commodity and high performance products. It is getting more important for a material being harmless and comfortable, while the "life cycle cost", which includes the cost during use and the recycle cost after use, is regarded as more important to evaluate a material. Those changes are accelerating the inter-material penetration. Several examples of the material design and production technologies, which responded to the changing market needs and developed new applications of polyolefin, are discussed. [source] Ultrasound aided extrusion process for preparation of polyolefin,clay nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 8 2008Sergey Lapshin A continuous ultrasound assisted process using a single screw compounding extruder with an ultrasonic attachment was developed to prepare polyolefin/clay nanocomposites. High-density polyethylene and isotactic polypropylene were compared. The feed rate that controls the residence time of the polymer in the ultrasonic treatment zone was varied. Die pressure and power consumption were measured. Rheological properties, morphology, and mechanical properties of the untreated and ultrasonically treated nanocomposites were studied. Similarities and differences of obtained nanocomposites are discussed based on their properties and structural characteristics. The modified Halpin-Tsai theory of composite materials has been employed in order to predict the effect of incomplete exfoliation of clay platelets on the Young's modulus of the nanocomposites. A good agreement between experimental and theoretical data has been observed when reduction of the reinforcement efficiency of clay had been incorporated through the reduced aspect ratio of elementary clay platelets. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers [source] Methyl methacrylate modification of polyolefin in a batch mixer and a twin-screw extruder experiment and kinetic modelPOLYMER ENGINEERING & SCIENCE, Issue 12 2003Jaehyug Cha Free radical grafting with methyl methacrylate onto molten polypropylene was investigated in both an internal mixer and a modular co-rotating twin-screw extruder. There has been little open literature on melt free radical grafting copolymerization of methyl methacrylate. There is also little information on the evolution of grafting reaction with respect to reaction time in an internal mixer and along the screw axes with methyl methacrylate. The influence of residence time on the degree of grafting in an internal mixer and a twin-screw extruder was studied through measuring reaction yields with respect to reaction time in a mixer and evolution of reaction yield along the screw axis. The degree of grafting increased with initial monomer and peroxide concentration. The grafting reactions with three different peroxides were also investigated. The grafting levels were similar to maleic anhydride and suggested that only an individual methyl methacrylate unit be grafted. The melt viscosity was dramatically reduced with addition of peroxide. A kinetic scheme of our reaction system for methyl methacrylate was proposed and compared with the experimental results. [source] Maleic anhydride modification of polyolefin in an internal mixer and a twin-screw extruder: Experiment and kinetic modelPOLYMER ENGINEERING & SCIENCE, Issue 7 2001Jaehyug Cha There has been little effort. to quantitatively understand graft copolymerization in batch and continuous mixers. Little information exists on the evolution of grafting reactions with respect to residence time in an internal mixer or along the screw axis in a twin-screw extruder. In this study, maleic anhydride was grafted onto polypropylene in both an internal mixer and a twin screw extruder. The influence of residence time on degree of grafting in an internal mixer and a twin screw extruder was studied through measuring reaction yields with respect to reaction time in the internal mixer as well as along the screw axis in the extruder. The dependence of the degree of grafting with monomer and peroxide concentration was determined. A free radical kinetic model of the process was developed and compared to experiment. Kinetic parameters were determined. [source] Styrene grafting onto a polyolefin in an internal mixer and a twin-screw extruder: Experiment and kinetic modelPOLYMER ENGINEERING & SCIENCE, Issue 7 2001Jaehyug Cha There has been relatively little effort to quantitatively understand graft copolymerizaution in either batch mixers or twin-screw extruders. Most efforts have concentrated on grafting maleic anhydride, which does not homopolymerize. In this paper we consider grafting with styrene, which may homopolymerize as well as graft. The influence of residence time on degree of grafting in an internal mixer and a twin-screw extruder were studied by measuring reaction yields with respect to reaction time in a mixer and along the screw axis in a twin-screw extruder. The degree of grafting increased with initial monomer and peroxide concentration. Grafting reactions with three different peroxides were also investigated. The degree of styrene grafting in an internal mixer is slightly higher than that in a twin-screw extruder. The rate of reaction along the screw axis in terms of residence time seems higher than for the batch mixer. The melt viscosity dropped dramatically with addition of peroxide. A kinetic scheme is proposed and the experimental results are critically compared with it. [source] Metallocene based polyolefin: a potential candidate for the replacement of flexible poly (vinyl chloride) in the medical fieldPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9 2010M. C. Sunny Abstract A comparative assessment of the performance properties of metallocene polyolefin (m-PO) with those of plasticized poly (vinyl chloride) (pPVC) and ethylene vinyl acetate (EVA) copolymer having 18% vinyl acetate content (EVA-18), the two common polymers used for flexible medical products, is carried out. The preliminary evaluation of the processability, mechanical properties, and thermal stability of the new material, m-PO is described. The processability parameters like mixing torque and melt viscosity of m-PO are found to be comparable with those of pPVC and EVA-18. Mechanical properties such as tensile strength, elongation at break, and tear strength (TS) of m-PO are much higher than that of pPVC and EVA-18. Thermo gravimetric analysis (TGA) indicates that the thermal degradation of m-PO takes place only at temperatures above 340°C and can be processed at 170°C without much damage. Oxygen and carbon dioxide permeabilities of m-PO at three different temperatures (10, 25, and 40°C) are evaluated and compared with those of pPVC and EVA-18. It could be seen that the permeabilities of both the gases for m-PO at three temperatures were lower than those of pPVC and EVA. Biological evaluation of m-PO is carried out by assessing its cytotoxicity, hemolytic property, and blood clotting initiation. The cytotoxicity studies indicate that m-PO is non-toxic to the monolayer of L929 mammalian fibroblast cell lines on direct contact or the exposure of its extract. Non-hemolytic property of m-PO by direct contact as well as test on extract is revealed both in static and in dynamic conditions. Blood clotting time experiments indicate that the initiation of blood clotting due to m-PO is faster than that of pPVC and EVA-18. Copyright © 2009 John Wiley & Sons, Ltd. [source] Effects of two different maleic anhydride-modified adhesion promoters (PP-g-MA) on the structure and mechanical properties of nanofilled polyolefinsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009P. Eteläaho Abstract The effects of adhesion promoter properties on the structure and mechanical behavior of nanoclay-filled polyolefin nanocomposites are presented. Two different maleic anhydride-modified polypropylenes having varying maleic anhydride content and molecular weight were used. The influence of these parameters on the performance and morphology of the prepared polypropylene and high density polyethylene-based nanocomposites was examined by mechanical testing, X-ray diffraction, and electron microscopy. The low molecular weight adhesion promoter seemed to be effective in both matrices in relation to mechanical property enhancements, whereas its high molecular weight counterpart performed well only in polyethylene matrix. X-ray diffraction results and examination of morphology revealed that the intercalation and the dispersion of the nanoclay were more even in both matrices when the low molecular weight adhesion promoter with a higher maleic anhydride content was used. On the other hand, the use of high molecular weight adhesion promoter led to a less uniform dispersion but also to a greater amount of exfoliated clay particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Photografting of acrylic acid and methacrylic acid onto polyolefines initiated by formaldehyde in aqueous solutionsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009Jianmei Han Abstract Formaldehyde aqueous solution can act as an effective photoinitiating system for water-borne photografting. The photografting of acrylic acid (AA) and methacrylic acid (MAA) onto high-density polyethylene (HDPE), low-density polyethylene (LDPE) and polypropylene (PP) initiated by formaldehyde aqueous solutions has been reported. The effects of formaldehyde content and monomer concentration on grafting varied with the polymeric substrates and monomers used. For the grafting of AA onto HDPE, the extent of grafting increased with increasing formaldehyde content in the solution, monomer concentration had a little effect on grafting. Whereas for the grafting of MAA onto HDPE, the grafting performed in 8% formaldehyde aqueous solution lead to the highest extent of grafting, the extent of grafting increased with monomer concentration till 2.5 mol/L. MAA was easier to be grafted onto the polyolefins than AA. The easiness of grafting occurring on the polyolefins was in a decreasing order of LDPE > HDPE > PP. Qualitative and semi-quantitative Fourier transform infrared (FTIR) characterizations of the grafted samples were performed. For both grafted LDPE and PP samples, at the same irradiation time, the carbonyl index of the samples grafted with MAA was higher than that grafted with AA. The FTIR results are in accord with the results obtained by gravimetric method. The water absorbency of the grafted samples increased almost linearly with the extent of grafting. The PE films grafted with AA adsorbed more water than those grafted with MAA. This study had broadened the water-borne initiating system for photografting. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Poly(vinyl chloride) on the way from the 19th century to the 21st centuryJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2004D. Braun Abstract Despite all the technical and economic problems and the public discussions on the environmental dangers and hazards of chlorine chemistry, poly(vinyl chloride) (PVC) is the second most produced plastic (with a worldwide capacity of about 31 million tons), placing after polyolefins and before styrene polymers. Presently, PVC production worldwide is growing at a rate of more than 4% per year. The application of PVC was first described in a patent in 1913, but only after 1930 did a sustained interest in PVC arise in several industrial laboratories. The most remarkable milestones in PVC history and their importance to the development of macromolecular chemistry are briefly described, and some present PVC research and industrial applications, with respect to polymerization, stabilization, bulk property modification, and chemical and material recycling of PVC waste, are discussed. Some actual selected topics include the emulsion polymerization of vinyl chloride with polymeric surfactants and controlled free-radical polymerization with nitroxyls, whereas ionic and metal organic initiators have not found any technical applications. Chemical reactions offer many possibilities for the modification of PVC, but they have been not used on a technical scale yet. Much work has been done on stabilization with nontoxic or metal-free systems. The bulk properties of PVC can be influenced by impact modification through the addition of graft copolymers or by blending with other polymers. Also presented are some problems and recent developments in PVC recycling. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 578,586, 2004 [source] Controlled free-radical polymerization of vinyl chlorideJOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 3 2005Dietrich Braun Owing to the importance of poly(vinyl chloride) (PVC) as the second-largest plastic in volume after the polyolefins and above styrene polymers, the control of the free-radical polymerization of vinyl chloride (VC) is of high industrial and academic interest. But still the term "controlled" polymerization is not yet clearly defined. Often it is used for quasi-living polymerizations with equilibrium reactions in the initiation and/or termination step or for the control of the molecular weight distribution (MWD), but it can also be applied to several structural aspects such as stereochemistry, branching, or special technical properties. In the present article, the control of chain growth and chain transfer is discussed. It has been well known for many years that the propagation step in the VC polymerization is terminated to a large degree by the rather frequent and temperature-dependent chain transfer of the growing macromolecules to the monomer. Therefore, the degree of polymerization is strongly governed by the polymerization temperature. However, this transfer step does not result in a controlled or a narrow MWD. By means of free-radical nitroxide-mediated polymerization of VC in suspension, PVC with a narrower MWD can be obtained also at higher polymerization temperatures. The resulting PVC with nitroxide end groups can act as a macro-initiator for various monomers, resulting in two-block copolymers, which are, e.g., interesting compatibilizers in blends with PVC. J. VINYL ADDIT. TECHNOL., 11:86,90, 2005. © 2005 Society of Plastics Engineers [source] Compatibilization of poly(vinyl chloride) with polyamide and with polyolefin by using poly(lauryllactam- random -caprolactam- block -caprolactone)JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 3 2005In Kim The compatibilization of various poly(vinyl chloride) (PVC) blends was investigated. The blend systems were PVC-polyamide 12 (PA12), PVC-polypropylene (PP), and PVC-ethylene-propylene-diene rubber (EPDM) with a new compatibilizing agent, random-block terpolymer poly(,-lauryllactam- random -,-caprolactam- block -,-caprolactone) or systems containing these copolymers. The results were compared to those obtained in previous studies using poly(,-lauryllactam- block -,-caprolactone) copolymer. The new block copolymer was specially synthesized by reactive extrusion. Observation by scanning electron microscopy (SEM) revealed that compatibilized blends had a finer morphology than the noncompatibilized blends. Addition of 10 weight percent (wt%) of block copolymer proved to be sufficient to give a significant improvement of the mechanical properties of the immiscible PVC blends at room temperature and at high temperatures that were above the glass transition temperature of PVC. For polyolefins, a three-component compatibilizing system including maleated polypropylene, polyamide 12, and block copolymer was used. It was found that poly(,-lauryllactam- random -,-caprolactam- block -,-caprolactone) was the more efficient compatibilizing agent for the modification of PVC-polyamide 12, PVC-polypropylene, and PVC-ethylene-propylene-diene rubber blends. J. VINYL. ADDIT. TECHNOL., 11:95,110, 2005. © 2005 Society of Plastics Engineers [source] Reactive Blending of Polyamides with Different Carbonyl Containing Olefin PolymersMACROMOLECULAR MATERIALS & ENGINEERING, Issue 6 2003David Sémeril Abstract In this paper the blending of polyamides nylon 6 and nylon 12, with a perfectly alternating ethylene/CO copolymer containing 50 mol-% carbonyl groups (polyketone) is investigated in comparison to blends of the same polyamides with polyolefins containing varying degrees of carbonyl group incorporation. These include a poly[ethylene- co -(methyl acrylate)] copolymer containing 1.9 mol-% methyl ester groups and poly[ethylene- co -(ethyl undecylenate)] copolymers with between 0.20 and 1.25 mol-% ester incorporation. Blends were obtained of polyamides and the polyolefins in compositions between 20/80 and 80/20 in solution and in a Brabender mixer. SEM studies together with TGA, DSC and FTIR measurements show excellent compatibilization for both polyketone and poly[ethylene- co -(methyl acrylate)] copolymers with the nylons. The poly[ethylene- co -(ethyl undecylenate)] polymers displayed much less compatibilization although they still performed significantly better compared to pure polyethylene. The difference in compatibilization is discussed with respect to the importance of both the number of interactive groups present in the polyolefin and the steric requirements of hydrogen bond formation. SEM micrograph of the fracture surface of the blend nylon 6/polyethylene 70:30. [source] Distinguishing Linear from Star-Branched Polystyrene Solutions with Fourier-Transform RheologyMACROMOLECULAR RAPID COMMUNICATIONS, Issue 22 2004Thorsten Neidhöfer Abstract Summary: Fourier-Transform rheology (FT rheology) was used to study the influence of the degree of branching on the nonlinear relaxation behaviour of polystyrene solutions. The results were compared with those obtained under oscillatory shear and step-shear conditions. The different topologies could be distinguished using FT rheology where the other rheological measurements failed. Significant differences occurred under large amplitude oscillatory shear (LAOS) conditions as particularly reflected in the phase difference of the third harmonic, ,3, which could be related to strain-softening and strain-hardening behaviour. Currently, this work is extended towards different topologies in polyolefins (e.g. long chain branched). Phase difference ,3 as a function of the Deborah number De at ,0,=,2 for the polystyrene solutions measured at temperatures from 295 to 350.5 K. [source] Investigations into the Chemical Modification of Polyolefin Surfaces by Radical Reactions during MoldingMACROMOLECULAR REACTION ENGINEERING, Issue 4 2007Jürgen Nagel Abstract The surfaces of polyolefin parts are usually modified by separate processing steps. In this paper, we investigate how an in situ surface modification of polyolefins could be realized during molding, based on radical reactions, by which a macromolecule with functional groups is grafted to the polyolefin surface. The temperature of the melt is used to initialize the reactions. The different steps of the radical reaction chain were analyzed using model reactions. A modifier composition consisting of dibenzoylperoxide, potassium persulfate and poly(vinyl alcohol) revealed to be suitable. This composition was used for injection molding experiments. The bondability of the injection molded parts was largely enhanced. [source] Liquid Chromatographic Separation of Olefin Oligomers and its Relation to Separation of Polyolefins , an OverviewMACROMOLECULAR SYMPOSIA, Issue 1 2009Tibor Macko Abstract Summary: Linear and branched alkanes are oligomers of polyethylene. Alkanes with higher molar masses are called waxes. These substances are widely used as fuels, oils, lubricants, etc. and for these reasons many groups have tried to analyse, separate and characterise alkanes by various methods, including liquid chromatography. Alkanes may be separated according to their size in solution by SEC. In addition to chromatographic systems separating in the SEC mode, various sorbent-solvent systems have been published, where alkanes have been separated one from another by adsorption and/or precipitation mechanism. The mobile phase is either a non-polar solvent or a polar solvent or a mixture of a solvent and a non-solvent for alkanes. Even near critical conditions, which have several advantages for applications of HPLC in polymer analysis, have been identified for alkanes. Moreover, selective separations of branched alkanes according to their structure have been published. In the majority of these published studies, solvents with low boiling points have been used as the mobile phases, which do not allow dissolution of crystalline polyolefins at atmospheric pressure. However, taking into account experiences with the separation of alkanes, new HPLC systems for the separation of polyolefins may be developed. This is a major challenge and first results are presented in this contribution. [source] Simulation of Crystallization Analysis Fractionation (Crystaf) of Linear Olefin Block CopolymersMACROMOLECULAR SYMPOSIA, Issue 1 2009Siripon Anantawaraskul Abstract Summary: Linear olefin block copolymers (OBCs) have microstructures that are unique among polyolefins and exhibit properties that are different from those of other polyolefin elastomers. Characterizing their chain microstructures is a challenging task, as conventional characterization techniques cannot probe directly block length distribution or composition. In this work, we used a Monte Carlo model to predict the microstructure details of OBCs and a modified version of the Crystaf model previously developed in our groups to describe theoretical Crystaf profiles for model OBCs. This model can be used as a tool to interpret Crystaf results of these interesting new polyolefins and to relate them to OBC microstructures. Effects of polymerization parameters on OBC microstructure and Crystaf profiles were also discussed. [source] Grafting of polyolefins with maleic anhydride: alchemy or technology?MACROMOLECULAR SYMPOSIA, Issue 1 2003Martin van Duin Abstract Nowadays, the process of maleic anhydride (MA) grafting and the application of MA-grafted polyolefins are viewed as mature technologies. The chemistry and technology of modifying apolar polyolefins with the polar and reactive MA either in solution or in the melt were already explored as far back as the 1950s. Commercial applications exploit the improved adhesion of polyolefins to polar materials, both at the macroscopic scale and on the microscopic scale. However, it is hardly recognised that, from a scientific point of view, grafting has still a strong resemblance to alchemy. Both process and application technologies have been developed in a trial and error fashion. Only in the last decade the structure of MA-grafted polyolefins has been elucidated and attempts to "look" inside the extruder during grafting were only recently successful. The first steps towards the development of sound chemical models are currently made. An overview will be given of the progress made in the various areas mentioned. [source] |