Polymer-blend Systems (polymer-blend + system)

Distribution by Scientific Domains


Selected Abstracts


Generation of Compositional-Gradient Structures in Biodegradable, Immiscible, Polymer Blends by Intermolecular Hydrogen-Bonding Interactions,

ADVANCED FUNCTIONAL MATERIALS, Issue 10 2005
B. Hexig
Abstract A biodegradable, immiscible poly(butylenes adipate- co -butylenes terephthalate) [P(BA- co -BT)]/poly(ethylene oxide) (PEO) polymer blend film with compositional gradient in the film-thickness direction has been successfully prepared in the presence of a low-molecular-weight compound 4,4,-thiodiphenal (TDP), which is used as a miscibility-enhancing agent. The miscibilities of the P(BA- co -BT)/PEO/TDP ternary blend films and the P(BA- co -BT)/PEO/TDP gradient film were investigated by differential scanning calorimetry (DSC). The compositional gradient structure of the P(BA- co -BT)/PEO/TDP (46/46/8 w/w/w) film has been confirmed by microscopic mapping measurement of Fourier-transform infrared spectra and dynamic mechanical thermal analysis. We have developed a new strategy for generating gradient-phase structures in immiscible polymer-blend systems by homogenization, i.e., adding a third agent that can enhance the miscibility of the two immiscible polymers through simultaneous formation of hydrogen bonds with two component polymers. [source]


Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells

ADVANCED MATERIALS, Issue 14-15 2009
Li-Min Chen
Abstract Polymer morphology has proven to be extremely important in determining the optoelectronic properties in polymer-based devices. The understanding and manipulation of polymer morphology has been the focus of electronic and optoelectronic polymer-device research. In this article, recent advances in the understanding and controlling of polymer morphology are reviewed with respect to the solvent selection and various annealing processes. We also review the mixed-solvent effects on the dynamics of film evolution in selected polymer-blend systems, which facilitate the formation of optimal percolation paths and therefore provide a simple approach to improve photovoltaic performance. Recently, the occurrence of vertical phase separation has been found in some polymer:fullerene bulk heterojunctions.1,3 The origin and applications of this inhomogeneous distribution of the polymer donor and fullerene acceptor are addressed. The current status and device physics of the inverted structure solar cells is also reviewed, including the advantage of utilizing the spontaneous vertical phase separation, which provides a promising alternative to the conventional structure for obtaining higher device performance. [source]


Core,shell structure and segregation effects in composite droplet polymer blends

AICHE JOURNAL, Issue 4 2003
Joël Reignier
Core,shell morphology formation within the dispersed phase was studied for composite droplet polymer-blend systems comprising a high-density polyethylene matrix, polystyrene shell and different molecular weights of poly(methyl methacrylate) core material. The blends were prepared in the melt using an internal mixer, and the morphology was analyzed by electron microscopy. Changing the viscoelastic properties of the core in the dispersed phase dramatically affects PS-PMMA segregation within the dispersed composite droplet itself. A high-molecular-weight-PMMA core contains a large quantity of occluded PS inclusions, while the low-molecular-weight PMMA results in a perfectly segregated PS shell and PMMA core. These phenomena were attributed to the viscosity of the PMMA. Using the latter system, a direct microscopic study of the shell formation process demonstrates unambiguously that under conditions of perfect segregation, the onset of complete shell formation corresponds to a shell thickness that is close to two times the radius of gyration of polystyrene. Thus, the thinnest possible shell in such a system possesses a molecular-scale thickness. The system with the high-molecular-weight-PMMA core demonstrates an onset of complete shell formation that is displaced to higher concentrations due to the poor segregation effect. By counterbalancing the effects of viscosity ratio and interfacial effects on the composite droplet size, it is possible to generate perfectly segregated core,shell dispersed-phase morphologies of almost identical size with a controlled shell thickness ranging from 40 to 300 nm. [source]


Effect of Chain-Length Dependence of Interaction Parameter on Spinodals for Polydisperse Polymer Blends

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 5 2006
Xiyan Du
Abstract Summary: The chain-length dependence of the Flory-Huggins (FH) interaction parameter is introduced into the FH lattice theory for polydisperse polymer-blend systems. The spinodals are calculated for the model polymer blends with different chain lengths and distributions. It is found that all the related variables, rn, rw, rz, and chain-length distribution, have effects on the spinodals for polydisperse polymer blends. The spinodals at different chain lengths. [source]