Polydispersity Index Values (polydispersity + index_value)

Distribution by Scientific Domains


Selected Abstracts


Synthesis and characterization of imine-coupled polyphenols containing carbazole units

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009
smet Kaya
Abstract Imine coupled phenolic monomers containing carbazole unit were synthesized in four steps. The monomers were polymerized via oxidative polycondensation by air as oxidant in an aqueous alkaline medium at 50°C. The structures of compounds were confirmed by ultraviolet,visible (UV,vis), Fourier transform infrared, and 1H- and 13C-NMR techniques. The conductivity measurements of these polymers were made by the four-point probe technique and iodine was used as doping agent. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and electrochemical and optical band gap values were calculated by the results of the UV,vis and the cyclic voltammetry measurement, respectively. The number-average molecular weight, weight-average molecular weight, and polydispersity index values were determined by the size exclusion chromatography technique. Also, thermal behavior of these polymers was determined by thermogravimetric/differential thermal analysis measurements in a N2 atmosphere between 20 and 1000°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Semibatch RAFT polymerization for producing ST/BA copolymers with controlled gradient composition profiles

AICHE JOURNAL, Issue 4 2008
Xiaoying Sun
Abstract With controlled/living radical copolymerization, the composition profile along polymer chains becomes a tunable parameter in preparing copolymer products for novel materials properties. In this work, a novel series of styrene/butyl acrylate (St/BA) copolymers with precisely designed composition profiles (uniform, linear gradient, tanh gradient, and triblock with a linear gradient mid-block) were produced using a semibatch reversible addition-fragmentation chain transfer copolymerization mediated by benzyl dithioisobutyrate. The comonomer feeding rate was programmed based on a kinetic model with the targeted composition profile as an objective functions. The experimental composition and molecular weight profiles agreed very well with the model predictions. The polymer molecular weight distributions were narrow with polydispersity index values about 1.3. The amount of dead chains was controlled below 10%. The glass transition behaviors of the St/BA copolymers were evaluated and their Tg values were found to be in an order of uniform < linear gradient < tanh gradient < triblock with 10°C for uniform and 140°C for triblock copolymers. © 2008 American Institute of Chemical Engineers AIChE J 2008 [source]


Synthesis of azobenzene-containing polymers via RAFT polymerization and investigation on intense fluorescence from aggregates of azobenzene-containing amphiphilic diblock copolymers

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2008
Jie Xu
Abstract The well-defined azobenzene-containing homopolymers, poly{6-(4-phenylazophenoxy)hexyl methacrylate (AHMA)} (PAHMA), were synthesized via reversible addition fragmentation chain transfer polymerization (RAFT) in anisole solution using 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) as the RAFT agent and 2,2,-azobisisobutyronitrile (AIBN) as the initiator. The first-order kinetic plot of the polymerization and the linear dependence of molecular weights of the homopolymers with the relatively low polydispersity index values (PDIs , 1.25) on the monomer conversions were observed. Furthermore, the amphiphilic diblock copolymer, poly{6-(4-phenylazophenoxy)hexyl methacrylate (AHMA)}- b -poly{2-(dimethylamino)ethyl methacrylate (DMAEMA)} (PAHMA- b -PDMAEMA), was prepared with the obtained PAHMA as the macro-RAFT agent. The structures and properties of the polymers were characterized by 1H NMR and GPC, respectively. Interestingly, the amphiphilic diblock copolymers in chloroform (CHCl3) solution (PAHMA23 - b -PDMAEMA97 (4 × 10,5 M, Mn(GPC) = 18,400 g/mol, PDI = 1.48) and PAHMA28 - b -PDMAEMA117 (6 × 10,5 M, Mn(GPC) = 19,300 g/mol, PDI = 1.51) exhibited the intense fluorescence emission at ambient temperature. Moreover, the fluorescent intensity of PAHMA- b -PDMAEMA in CHCl3 was sensitive to the ultraviolet irradiation at 365 nm, which increased within the first 10 min and later decreased when irradiation time was prolonged to 30 min or longer. The well distributed, self-assembled micelles composed of azobenzene-containing amphiphilic diblock copolymers, (PAHMA- b -QPDMAEMA)s (QPDMAEMA is quaternized PDMAEMA), in the mixed N,N -dimethyl formamide (DMF)/H2O solutions were prepared. Their fluorescent intensities decreased with the increasing amount of water. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5652,5662, 2008 [source]


Acyclic diene metathesis polymerization of 2,5-dialkyl-1,4-divinylbenzene with molybdenum or ruthenium catalysts: Factors affecting the precise synthesis of defect-free, high-molecular-weight trans -poly(p -phenylene vinylene)s

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2005
Kotohiro Nomura
Abstract Factors affecting the syntheses of high-molecular-weight poly(2,5-dialkyl-1,4-phenylene vinylene) by the acyclic diene metathesis polymerization of 2,5-dialkyl-1,4-divinylbenzenes [alkyl = n -octyl (2) and 2-ethylhexyl (3)] with a molybdenum or ruthenium catalyst were explored. The polymerizations of 2 by Mo(N -2,6-Me2C6H3) (CHMe2 Ph)[OCMe(CF3)2]2 at 25 °C was completed with both a high initial monomer concentration and reduced pressure, affording poly(p -phenylene vinylene)s with low polydispersity index values (number-average molecular weight = 3.3,3.65 × 103 by gel permeation chromatography vs polystyrene standards, weight-average molecular weight/number-average molecular weight = 1.1,1.2), but the polymerization of 3 was not completed under the same conditions. The synthesis of structurally regular (all- trans), defect-free, high-molecular-weight 2-ethylhexyl substituted poly(p -phenylene vinylene)s [poly3; degree of monomer repeating unit (DPn) = ca. 16,70 by 1H NMR] with unimodal molecular weight distributions (number-average molecular weight = 8.30,36.3 × 103 by gel permeation chromatography, weight-average molecular weight/number-average molecular weight = 1.6,2.1) and with defined polymer chain ends (as a vinyl group, CHCH2) was achieved when Ru(CHPh)(Cl)2(IMesH2)(PCy3) or Ru(CH-2-OiPr-C6H4)(Cl)2(IMesH2) [IMesH2 = 1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene] was employed as a catalyst at 50 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6166,6177, 2005 [source]


Development of an efficient route to hyperbranched poly(arylene ether sulfone)s

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2005
Patrick Himmelberg
Abstract A two-step route to an AB2 monomer that underwent polymerization via nucleophilic aromatic substitution to afford hyperbranched poly(arylene ether sulfone)s (HB PAES) was developed. The synthesis of 3,5-difluoro-4,-hydroxydiphenyl sulfone (4) was accomplished by the reaction of 3,5-difluorophenylmagnesium bromide with 4-methoxyphenylsulfonyl chloride, followed by deprotection of the phenol group with HBr in acetic acid. The polymerization of 4 in the presence of 3,4,5-trifluorophenylsulfonyl benzene or tris(3,4,5-trifluorophenyl)phosphine oxide as a core molecule afforded HB PAES with number-average molecular weights ranging from 3400 to 8400 Da and polydispersity index values ranging from 1.5 to 4.8. The presence of cyclic oligomeric species, formed by an intramolecular cyclization process, was a contributing factor to the relatively low molecular weights. The degree of branching (DB) of the HB PAES samples was estimated by a comparison of the 19F NMR spectra of the polymer samples with those of a series of model compounds, and DB values ranging from 0.51 to 0.70 were determined. The glass-transition temperatures for the HB PAES samples were in the range of 205,222 °C, as determined by differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3178,3187, 2005 [source]