Home About us Contact | |||
Polycarboxylic Acids (polycarboxylic + acid)
Kinds of Polycarboxylic Acids Selected AbstractsInterpolymer Complexes of Water-Soluble Nonionic Polysaccharides with Polycarboxylic Acids and Their ApplicationsMACROMOLECULAR BIOSCIENCE, Issue 6 2003Zauresh S. Nurkeeva Abstract Literature data as well as our own experimental results devoted to the complexation of polycarboxylic acids with various water-soluble polysaccharides (methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, starch, and dextran) by means of hydrogen bonding are systematized and analyzed. The specific peculiarities of interpolymer complexes based on polysaccharides-polycarboxylic acids are demonstrated. The perspectives for the application of these interpolymer complexes are considered. It was shown that these materials possess good biocompatibility and adhesive properties. The promising directions for further study of interpolymer complexes between polycarboxylic acids and nonionic polysaccharides as well as existing gaps in the knowledge in this field are pointed out. Formation of compact IPCs and hydrophilic interpolymer associates. [source] Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern SiberiaGLOBAL CHANGE BIOLOGY, Issue 6 2008GEORG GUGGENBERGER Abstract Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method-specific composition and storage of BC, i.e. BPCA-BC, in a 0.44 km2 -sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA-BC export with the stream draining the catchment. The catchment is composed of various landscape units with south-southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north-northeast (NNE) faced mineral soils with thin active layer, and permafrost-affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA-BC amounted to 0.6,3.0% of OC. This corresponded to a BC storage of 22,3440 g m,2. The relative contribution of BPCA-BC to OC, as well as the absolute stocks of BPCA-BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA-BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA-BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA-BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA-BC m,2 was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean. [source] Aggregate-occluded black carbon in soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2006S. Brodowski Summary The great stability of black carbon (BC) in soils may not be solely attributable to its refractory structure but also to poor accessibility when physically enveloped by soil particles. Our aim was to elucidate the intensity of physical entrapment of BC within soil aggregates. For this purpose, the A horizon of a forest, and of a grassland soil, and of three soils under tillage, were sampled at the experimental station Rotthalmünster, Germany. Black carbon was assessed in water-stable aggregates and aggregate-density fractions using benzene polycarboxylic acids as specific markers. The greatest BC concentrations made up 7.2% of organic carbon and were found in the < 53 ,m fraction. The smallest BC concentrations occurred in the large macroaggregate fractions (> 2 mm). This pattern has been sustained even after tillage. The C-normalized BC concentrations were significantly greater (P < 0.05) in the occluded particulate organic matter (OPOM) fractions than in the free particulate organic matter (FPOM) and the mineral fractions. This enrichment of BC compared with organic carbon in the OPOM fractions amounted to factors of 1.5,2.7. Hence, BC was embedded within microaggregates in preference to other organic carbon compounds. Only 2.5,3.5% of BC was located in the OPOM fraction < 1.6 g cm,3, but 22,24% in the OPOM fraction with a density of 1.6,2.0 g cm,3. This suggests that BC possibly acted as a binding agent or was selectively enriched during decomposition of protected SOM, or both. Physical inclusion, particularly within microaggregates, could therefore contribute to the long mean-residence times of soil-inherent BC. [source] Minocycline-Based Europium(III) Chelate Complexes: Synthesis, Luminescent Properties, and Labeling to StreptavidinHELVETICA CHIMICA ACTA, Issue 11 2009Takuya Nishioka Abstract Two chelate ligands for europium(III) having minocycline (=(4S,4aS,5aR,12aS)-4,7-bis(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,10,12,12a-tetrahydroxy-1,11-dioxonaphthacene-2-carboxamide; 5) as a VIS-light-absorbing group were synthesized as possible VIS-light-excitable stable Eu3+ complexes for protein labeling. The 9-amino derivative 7 of minocycline was treated with H6TTHA (=triethylenetetraminehexaacetic acid=3,6,9,12-tetrakis(carboxymethyl)-3,6,9,12-tetraazatetradecanedioic acid) or H5DTPA (=diethylenetriaminepentaacetic acid=N,N -bis{2-[bis(carboxymethyl)amino]ethyl}glycine) to link the polycarboxylic acids to minocycline. One of the Eu3+ chelates, [Eu3+(minocycline-TTHA)] (13), is moderately luminescent in H2O by excitation at 395,nm, whereas [Eu3+(minocycline-DTPA)] (9) was not luminescent by excitation at the same wavelength. The luminescence and the excitation spectra of [Eu3+(minocycline-TTHA)] (13) showed that, different from other luminescent EuIII chelate complexes, the emission at 615,nm is caused via direct excitation of the Eu3+ ion, and the chelate ligand is not involved in the excitation of Eu3+. However, the ligand seems to act for the prevention of quenching of the Eu3+ emission by H2O. The fact that the excitation spectrum of [Eu3+(minocycline-TTHA)] is almost identical with the absorption spectrum of Eu3+ aqua ion supports such an excitation mechanism. The high stability of the complexes of [Eu3+(minocycline-DTPA)] (9) and [Eu3+(minocycline-TTHA)] (13) was confirmed by UV-absorption semi-quantitative titrations of H4(minocycline-DTPA) (8) and H5(minocycline-TTHA) (12) with Eu3+. The titrations suggested also that an 1,:,1 ligand Eu3+ complex is formed from 12, whereas an 1,:,2 complex was formed from 8 minocycline-DTPA. The H5(minocycline-TTHA) (12) was successfully conjugated to streptavidin (SA) (Scheme,5), and thus the applicability of the corresponding Eu3+ complex to label a protein was established. [source] Cation exchange finishing of nonwoven polyester with polycarboxylic acids and cyclodextrinsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007L. Ducoroy Abstract We describe a chemical method for the finishing of polyester nonwoven fabrics that aimed to obtain ion exchange textiles. This approach was based on the use of polycarboxylic acids (PCA) and cyclodextrins as carbohydrate compounds and finishing agents, respectively. It was observed that the reaction between these reactants yielded a crosslinked polymer that was physically anchored onto the fibers. This polymer can be considered as a resin issued from the esterification between the COOH groups of the PCA with the OH groups of the carbohydrate. As the esterification reaction was not complete, many free carboxylic groups remained on the surface of the coating polymer. This feature offered the ion exchange properties to the textile support. In this article, we described the pad-dry-cure process and showed the influence of the curing parameters (time and temperature), the nature, and the concentration of the components and the pH of the impregnating bath. The grafting rate (in wt %) and the ion exchange capacity (IEC) were observed in parallel. First, it was observed that the best IEC capacity (that could reach 1 mmol/g) was obtained when an ideal compromise was applied between time and temperature of curing. We also evidenced that IEC depended on the nature and on the concentration of the PCA (chosen among citric acid, 1,2,3,4-butanetetracarboxylic acid, and polyacrylic acid) and on the pH of the impregnating bath. Finally, it was observed that cyclodextrins were more appropriate than starch as finishing coreactants. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3730,3738, 2007 [source] Benzene polycarboxylic acids,A ubiquitous class of compounds in soilsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2010Ludwig Haumaier Abstract Black carbon (BC) occurs ubiquitously in the environment. Its oxidation in the laboratory yields a suite of benzene polycarboxylic acids (BPCAs), suggesting similar oxidation products in soils. Since only for a few soils the occurrence of BPCAs in the free form has been documented, screening for them in a broad range of contrasting soils was conducted. They were extracted from soil samples with 0.5 M NaOH and quantified using gas chromatography,mass spectrometry. As expected, BPCAs turned out to be as ubiquitous as BC. They were detected not only in every soil sample investigated so far, but also in samples from drill cores up to a depth of 10 m and in recently deposited calcareous tufa. The concentrations covered a range similar to that of some phenolic acids. The range exceeded those reported for low-molecular-weight aliphatic acids or simple sugars in soils. The distribution of BPCAs in soil profiles indicated a considerable potential of translocation within, and export from, soil, in particular of benzene hexacarboxylic (mellitic) acid. Mellitic acid may therefore be present in almost any geochemical sample affected by seepage water from soils. Its high water solubility and strong metal-complexing ability suggest it may be involved in metal-transport processes, at least on geological timescales. [source] Interpolymer Complexes of Water-Soluble Nonionic Polysaccharides with Polycarboxylic Acids and Their ApplicationsMACROMOLECULAR BIOSCIENCE, Issue 6 2003Zauresh S. Nurkeeva Abstract Literature data as well as our own experimental results devoted to the complexation of polycarboxylic acids with various water-soluble polysaccharides (methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, starch, and dextran) by means of hydrogen bonding are systematized and analyzed. The specific peculiarities of interpolymer complexes based on polysaccharides-polycarboxylic acids are demonstrated. The perspectives for the application of these interpolymer complexes are considered. It was shown that these materials possess good biocompatibility and adhesive properties. The promising directions for further study of interpolymer complexes between polycarboxylic acids and nonionic polysaccharides as well as existing gaps in the knowledge in this field are pointed out. Formation of compact IPCs and hydrophilic interpolymer associates. [source] |