Pollution Effects (pollution + effects)

Distribution by Scientific Domains


Selected Abstracts


ECOSYSTEM DYNAMICS AND POLLUTION EFFECTS IN AN OZARK CAVE STREAM,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2003
Gary O. Graening
ABSTRACT: Subterranean ecosystems harbor globally rare fauna and important water resources, but ecological processes are poorly understood and are threatened by anthropogenic stresses. Ecosystem analyses were conducted from 1997 to 2000 in Cave Springs Cave, Arkansas, situated in a region of intensive land use, to determine the degree of habitat degradation and viability of endangered fauna. Organic matter budgeting quantified energy flux and documented the dominant input as dissolved organic matter and not gray bat guano (Myotis grisescens). Carbon/nitrogen stable isotope analyses described a trophic web of Ozark cavefish (Amblyopsis rosae) that primarily consumed cave isopods (Caecidotea stiladactyla), which in turn appeared to consume benthic matter originating from a complex mixture of soil, leaf litter, and anthropogenic wastes. Septic leachate, sewage sludge, and cow manure were suspected to augment the food web and were implicated in environmental degradation. Water, sediment, and animal tissue analyses detected excess nutrients, fecal bacteria, and toxic concentrations of metals. Community assemblage may have been altered: sensitive species-grotto salamanders (Typhlotriton spelaeus) and stygobro-mid amphipods,were not detected, while more resilient isopods flourished. Reduction of septic and agricultural waste inputs may be necessary to restore ecosystem dynamics in this cave ecosystem to its former undisturbed condition. [source]


Evaluating the impact of pollution on plant,Lepidoptera relationships

ENVIRONMETRICS, Issue 4 2005
Christian Mulder
Abstract We monitored the biodiversity of plants, adult butterflies and leaf-miners in a Dutch nature reserve over a period of six years (1994,1999) within the International Co-operative Programme on Integrated Monitoring on Air Pollution Effects (ICP-IM). Butterfly abundance decreased steadily over the period, indicating a negative diversity trend, while the number of leaf-mining larvae of Microlepidoptera remained fairly constant. Also the concentration of pollutants (NH4, NO3, SO4, Cd, Cu and Zn) was determined in air, leaves, litter, throughfall and stemflow. We have no reason to expect a negative impact of acidification in rainwater or climate change, as temperature and ozone show no significant trends across the six years. It is shown that the nectar-plants of adult butterflies are much more sensitive to heavy metals than the nectar-plants of moths and other pollinating insects. It is hypothesized that the butterfly decline is a secondary effect of heavy metal stress on local plants, not resulting in a decrease in the number of host-plants, but in a selective pressure of pollutants on the plant vigour, subsequently affecting their pollinators (p,<,0.001). An alternative explanation, such as the possible coexistence of a direct effect of xenobiotics on the adult Lepidoptera occurring in the study area, is not supported by our data (p,>,0.05). Copyright © 2005 John Wiley & Sons, Ltd. [source]


Genetic indicators of herbicide stress in the pacific oyster Crassostrea gigas under experimental conditions

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2000
Dario Moraga
Abstract This study examined use of the oyster Crassostrea gigas as a bioindicator of experimental pollution caused by two concentrations of five pesticides (atrazine, isoproturon, alachlore, metolachlore, and diuron) used in agricultural and urban activities. The effect of these pesticides on the genetic structure of the marine bivalve was studied as part of an environmental biomonitoring project. This research was performed on two natural estuarine populations sampled along the French Atlantic coast as part of an ongoing monitoring program to survey the ecosystem of Brittany using two approaches: identifying the genetic markers based on the alleles and genotypes associated with pollution effects, and searching for a correlation between these markers and the sensitivity or tolerance of individuals under stress conditions. Results indicate a differential survival of individuals subjected to the various pollutants examined. The sensitivity of alleles and genotypes to environmental stress can be assessed based on the significant differences in allele and genotype frequencies observed between resistant and sensitive individuals when subjected to the pesticides. This genetic study included examination of five enzyme systems (Ak, Pgi, Cap, Pgm, and Mdh) involved in physiologic processes. A total of six alleles and five genotypes at three loci (Ak, Pgi, and Pgm) were identified as being markers of resistance or sensitivity. It is hypothesized that these markers could be used as potential genetic markers in estuarine ecosystem monitoring. [source]


Seasonal confounding and residual correlation in analyses of health effects of air pollution

ENVIRONMETRICS, Issue 4 2007
Isabella R. Ghement
Abstract To investigate the health effects of air pollution via a partially linear model, one must choose an appropriate amount of smoothing for accurate estimation of the linear pollution effects. This choice is complicated by the dependencies between the various covariates and by the potential residual correlation. Most existing approaches to making this choice are inadequate, as they neither target accurate estimation of the linear pollutant effects nor handle residual correlation. In this paper, we illustrate two new adaptive and objective methods for determining an appropriate amount of smoothing. We construct valid confidence intervals for the linear pollutant effects, intervals that account for residual correlation. We use our inferential methods to investigate the same-day effects of PM10 on daily mortality in two data sets for the period 1994 to 1996: one collected in Mexico City, an urban area with high levels of air pollution, and the other collected in Vancouver, British Columbia, an urban area with low levels of air pollution. For Mexico City, our methodology does not detect a PM10 effect. In contrast, for Vancouver, a PM10 effect corresponding to an expected 2.4% increase (95% confidence interval ranging from 0.0% to 4.7%) in daily mortality for every 10,µg/m3 increase in PM10 is identified. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Quasi optimal finite difference method for Helmholtz problem on unstructured grids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2010
Daniel T. Fernandes
Abstract A quasi optimal finite difference method (QOFD) is proposed for the Helmholtz problem. The stencils' coefficients are obtained numerically by minimizing a least-squares functional of the local truncation error for plane wave solutions in any direction. In one dimension this approach leads to a nodally exact scheme, with no truncation error, for uniform or non-uniform meshes. In two dimensions, when applied to a uniform cartesian grid, a 9-point sixth-order scheme is derived with the same truncation error of the quasi-stabilized finite element method (QSFEM) introduced by Babu,ka et al. (Comp. Meth. Appl. Mech. Eng. 1995; 128:325,359). Similarly, a 27-point sixth-order stencil is derived in three dimensions. The QOFD formulation, proposed here, is naturally applied on uniform, non-uniform and unstructured meshes in any dimension. Numerical results are presented showing optimal rates of convergence and reduced pollution effects for large values of the wave number. Copyright © 2009 John Wiley & Sons, Ltd. [source]