Home About us Contact | |||
Pollinator Species (pollinator + species)
Selected AbstractsFicus racemosa is pollinated by a single population of a single agaonid wasp species in continental South-East AsiaMOLECULAR ECOLOGY, Issue 13 2010N. KOBMOO Abstract High specificity in the Ficus -agaonid wasp mutualism has lead to the assumption of a mostly ,one-to-one' relationship, albeit with some exceptions. This view has been challenged by new molecular data in recent years, but surprisingly little is known about local and spatial genetic structuring of agaonid wasp populations. Using microsatellite markers, we analysed genetic structuring of Ceratosolen fusciceps, the fig wasp pollinating Ficus racemosa, a fig tree species widely distributed from India to Australia. In sampling stretching from the south of China to the south of Thailand we found evidence for only a single pollinating wasp species in continental South-East Asian mainland. We found no evidence for the co-occurrence of cryptic species within our subcontinent sampling zone. We observed no spatial genetic structure within sites and only limited structuring over the whole sampling zone, suggesting that F. racemosa is pollinated by a single population of a single agaonid wasp species all over continental South-East Asia. An additional sample of wasps collected on F. racemosa in Australia showed clear-cut genetic differentiation from the Asian continent, suggesting allopatric divergence into subspecies or species. We propose that the frequent local co-occurrence of sister species found in the literature mainly stems from contact zones between biogeographic regions, and that a single pollinator species over wide areas might be the more common situation everywhere else. [source] Optimal foraging when predation risk increases with patch resources: an analysis of pollinators and ambush predatorsOIKOS, Issue 5 2010Emily I. Jones Pollinators and their predators share innate and learned preferences for high quality flowers. Consequently, pollinators are more likely to encounter predators when visiting the most rewarding flowers. I present a model of how different pollinator species can maximize lifetime resource gains depending on the density and distribution of predators, as well as their vulnerability to capture by predators. For pollinator species that are difficult for predators to capture, the optimal strategy is to visit the most rewarding flowers as long as predator density is low. At higher predator densities and for pollinators that are more vulnerable to predator capture, the lifetime resource gain from the most rewarding flowers declines and the optimal strategy depends on the predator distribution. In some cases, a wide range of floral rewards provides near-maximum lifetime resource gains, which may favor generalization if searching for flowers is costly. In other cases, a low flower reward level provides the maximum lifetime resource gain and so pollinators should specialize on less rewarding flowers. Thus, the model suggests that predators can have qualitatively different top-down effects on plant reproductive success depending on the pollinator species, the density of predators, and the distribution of predators across flower reward levels. [source] Contribution of small insects to pollination of common buckwheat, a distylous cropANNALS OF APPLIED BIOLOGY, Issue 1 2009Hisatomo Taki Abstract Crop pollination by animals is an essential ecosystem service. Among animal-pollinated crops, distylous plants strongly depend on animal pollination. In distylous pollination systems, pollinator species are usually limited, although flowers of some distylous plants are visited by diverse animals. We studied the pollination biology of common buckwheat (Fagopyrum esculentum), a distylous crop mainly pollinated by honeybees and visited by many insect species, to evaluate the effects of non-honeybee species on pollination services. We focused on insects smaller than honeybees to determine their contribution to pollination. We applied pollination treatments with bags of coarse mesh to exclude flower visits by honeybees and larger insects and compared the seed set of bagged plants with that of untreated plants for pin and thrum flower morphs. We found a great reduction of seed set only in bagged pin flowers. We also confirmed that small insects, including ants, bees, wasps and flies, carried pin-morph pollen. These small insects transfer pollen from the short anthers of pin flowers to the short styles of thrum flowers, leading to sufficient seed set in thrum flowers. Consequently, small, non-honeybee insects have the potential to maintain at least half of the yield of this honeybee-dependent distylous crop. [source] |