Home About us Contact | |||
Pollen Dispersal (pollen + dispersal)
Selected AbstractsPollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscapeMOLECULAR ECOLOGY, Issue 8 2008THOR R. HANSON Abstract In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion. [source] The influence of pollinator abundance on the dynamics and efficiency of pollination in agricultural Brassica napus: implications for landscape-scale gene dispersalJOURNAL OF APPLIED ECOLOGY, Issue 6 2006KATRINA E. HAYTER Summary 1It is important to understand the pollination processes that generate landscape-scale gene dispersal in plants, particularly in crop plants with genetically modified (GM) varieties. In one such crop, Brassica napus, the situation is complicated by uncertainty over the relative importance of two pollen vectors, wind and insects. 2We investigated pollination in two fields of B. napus that bloomed at different times of year (April vs. July) and attracted different abundances of foraging social bees. Rates of pollen transfer were quantified by counting the pollen grains deposited on stigmas and remaining in the anthers at intervals after flower opening. 3Flowers open in April were adequately pollinated only after 5 days and only 10% received even a single bee visit. Flowers open in July received three bee visits per hour and were fully pollinated within 3 h. 4Based on published measurements of airborne pollen dispersal, we estimate that wind-pollination from a hypothetical field 1 km distant could have fertilized up to 0·3% of the field's seed when bees were scarce in April but only up to 0·007% when bees were abundant in July. 5The efficiency of pollination (the proportion of pollen released from anthers that landed on receptive stigmas) was seven times greater in July (1·5%) than in April (0·2%). The relatively high efficiency of insect pollination may help to explain the evolutionary maintenance of entomophily. 6Synthesis and applications. Our results begin to resolve a long-standing inconsistency among previous studies by suggesting that the susceptibility of fields of B. napus to long-distance cross-pollination by wind depends on the level of bee activity. Models for predicting GM gene flow at the landscape-scale in this crop should take this into account. [source] Phytogeographical data and modern pollen rain of the puna belt in southern Peru (Nevado Coropuna, Western Cordillera)JOURNAL OF BIOGEOGRAPHY, Issue 10 2007Adèle Kuentz Abstract Aim, To improve knowledge of the distribution of species and modern pollen dispersal in the puna vegetation belt (central Andes) for palaeoenvironmental analysis and reconstructions. Location, Puna belt, Nevado Coropuna, Western Cordillera, Peru. Methods, The vegetation facies and belts of the area were mapped by remote sensing using a March 1998 SPOT4 image. This was complemented by the interpretation of aerial photographs, by field sampling, and by the identification of plants. Data from 1940 to 1994 from the Peruvian meteorological station network were modelled to characterize the relationship between climate and vegetation. Twenty-four soil-surface samples were collected in the various vegetation facies identified on the map, and standard palynological techniques were applied to analyse these samples. A principal components analysis was performed on the pollen data set. Results, The map shows three bioclimatic belts and seven facies in the puna sensu lato, and identifies the main plants that are characteristic of each bioclimatic area. The pollen results fit the vegetation facies and belts, including the plant species of the distinct facies that are well represented in the pollen assemblages. The mesotropical belt is characterized by the predominance of Asteraceae-type Ambrosia; the supratropical belt shows significant frequencies of Asteraceae-type Senecio; the orotropical belt is characterized by high frequencies of Apiaceae and includes Polylepis woodland and peat bogs; and the cryorotropical belt shows significant frequencies of Asteraceae-type Senecio and Apiaceae. Main conclusions, The pollen grains of the plants that grow on the puna sensu lato are generally entomophilous and are therefore not transported far from their plant source. The distinct bioclimatic facies and belts identified by the cartography can thus be well distinguished by their pollen production and deposition. We were therefore able to characterize the relationship between pollen, vegetation and climate that can be used for palaeoenvironmental reconstructions. An altitudinal pollen gradient on the western slopes of the central Andes was revealed by the pollen study, with the succession of Asteraceae-type Ambrosia (1800,2200 m), Malvaceae (2700,3300 m), Asteraceae-type Senecio (3500,4100 m) and Apiaceae (above 4600 m). [source] Do linear landscape elements in farmland act as biological corridors for pollen dispersal?JOURNAL OF ECOLOGY, Issue 1 2010Anja Van Geert Summary 1.,Habitat fragmentation in agricultural landscapes has reduced the population sizes of many plant species while increasing their spatial isolation. Restoration or maintenance of the connectivity by gene flow between the fragmented patches may be determinant to sustaining viable populations, especially for insect-pollinated species. Functional biological corridors facilitating pollen flow between remnants in a human-dominated matrix might achieve this. 2.,Dye dispersal was investigated for the extremely fragmented insect-pollinated herb Primula vulgaris, using fluorescent dye particles as pollen analogues, in a study site comprising 20 populations, of which 13 pairs were physically connected by a linear landscape elements (LLEs, ditches), and 11 pairs were not connected by an LLE. The dye deposition events were used to fit a model of pollen dispersal at the landscape level. We examined whether existing LLEs in the intensively used agricultural landscape act as functional corridors for pollen dispersal. The effects of LLE length and size and plant density of the recipient population on the dispersal patterns were tested. 3.,Dye dispersal showed a leptokurtic decay distribution, with 80% of the dye transfers occurring at less than 85.1 m, and a maximal distance of 1010.8 m. The mean distance travelled by fluorescent dye particles based on the dye dispersal model was , = 87 m. 4.,Dye dispersal between populations was found to be significantly higher when populations were connected by an LLE, than when populations were unconnected. For the group of population pairs connected by an LLE, dye deposition significantly decreased with the distance to dye source, but was not related to recipient population size and plant density. 5.,Synthesis. Our study is, to our knowledge, the first to demonstrate that existing LLEs in an intensively used farmland may act as functional biological corridors facilitating pollen dispersal through pollinator movements. The maintenance or restoration of a network of populations connected by LLEs, but also by other landscape structures (e.g. population relays in vegetation patches and networks of small elements allowing indirect connections) should be strongly encouraged. [source] Spatial seed and pollen games: dispersal, sex allocation, and the evolution of dioecyJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 9 2010LUTZ FROMHAGE Abstract The evolutionary forces shaping within- and across-species variation in the investment in male and female sex function are still incompletely understood. Despite earlier suggestions that in plants the evolution or cosexuality vs. dioecy, as well as sex allocation among cosexuals, is affected by seed and pollen dispersal, no formal model has explicitly used dispersal distances to address this problem. Here, we present a game-theory model as well as a simulation study that fills in this gap. Our model predicts that dioecy should evolve if seeds and pollen disperse widely and that sex allocation among cosexuals should be biased towards whichever sex function produces more widely dispersing units. Dispersal limitations stabilize cosexuality by reinforcing competition between spatially clumped dispersal units from the same source, leading to saturating fitness returns that render sexual specialization unprofitable. However, limited pollen dispersal can also increase the risk of selfing, thus potentially selecting for dioecy as an outbreeding mechanism. Finally, we refute a recent claim that cosexuals should always invest equally in both sex functions. [source] Migration load in plants: role of pollen and seed dispersal in heterogeneous landscapesJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2008S. LOPEZ Abstract Evolution of local adaptation depends critically on the level of gene flow, which, in plants, can be due to either pollen or seed dispersal. Using analytical predictions and individual-centred simulations, we investigate the specific influence of seed and pollen dispersal on local adaptation in plant populations growing in patchy heterogeneous landscapes. We study the evolution of a polygenic trait subject to stabilizing selection within populations, but divergent selection between populations. Deviations from linkage equilibrium and Hardy,Weinberg equilibrium make different contributions to genotypic variance depending on the dispersal mode. Local genotypic variance, differentiation between populations and genetic load vary with the rate of gene flow but are similar for seed and pollen dispersal, unless the landscape is very heterogeneous. In this case, genetic load is higher in the case of pollen dispersal, which appears to be due to differences in the distribution of genotypic values before selection. [source] Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedlingMOLECULAR ECOLOGY, Issue 10 2010I. J. CHYBICKI Abstract The estimates of contemporary gene flow assessed based on naturally established seedlings provide information much needed for understanding the abilities of forest tree populations to persist under global changes through migration and/or adaptation facilitated by gene exchange among populations. Here, we investigated pollen- and seed-mediated gene flow in two mixed-oak forest stands (consisting of Quercus robur L. and Q. petraea [Matt.] Liebl.). The gene flow parameters were estimated based on microsatellite multilocus genotypes of seedlings and adults and their spatial locations within the sample plots using models that attempt to reconstruct the genealogy of the seedling cohorts. Pollen and seed dispersal were modelled using the standard seedling neighbourhood model and a modification,the 2-component seedling neighbourhood model, with the later allowing separation of the dispersal process into local and long-distance components. The 2-component model fitted the data substantially better than the standard model and provided estimates of mean seed and pollen dispersal distances accounting for long-distance propagule dispersal. The mean distance of effective pollen dispersal was found to be 298 and 463 m, depending on the stand, while the mean distance of effective seed dispersal was only 8.8 and 15.6 m, which is consistent with wind pollination and primarily seed dispersal by gravity in Quercus. Some differences observed between the two stands could be attributed to the differences in the stand structure of the adult populations and the existing understory vegetation. Such a mixture of relatively limited seed dispersal with occasional long distance gene flow seems to be an efficient strategy for colonizing new habitats with subsequent local adaptation, while maintaining genetic diversity within populations. [source] Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pinesMOLECULAR ECOLOGY, Issue 2010J. B. WHITTALL Abstract Critical to conservation efforts and other investigations at low taxonomic levels, DNA sequence data offer important insights into the distinctiveness, biogeographic partitioning and evolutionary histories of species. The resolving power of DNA sequences is often limited by insufficient variability at the intraspecific level. This is particularly true of studies involving plant organelles, as the conservative mutation rate of chloroplasts and mitochondria makes it difficult to detect polymorphisms necessary to track genealogical relationships among individuals, populations and closely related taxa, through space and time. Massively parallel sequencing (MPS) makes it possible to acquire entire organelle genome sequences to identify cryptic variation that would be difficult to detect otherwise. We are using MPS to evaluate intraspecific chloroplast-level divergence across biogeographic boundaries in narrowly endemic and widespread species of Pinus. We focus on one of the world's rarest pines , Torrey pine (Pinus torreyana) , due to its conservation interest and because it provides a marked contrast to more widespread pine species. Detailed analysis of nearly 90% (,105 000 bp each) of these chloroplast genomes shows that mainland and island populations of Torrey pine differ at five sites in their plastome, with the differences fixed between populations. This is an exceptionally low level of divergence (1 polymorphism/,21 kb), yet it is comparable to intraspecific divergence present in widespread pine species and species complexes. Population-level organelle genome sequencing offers new vistas into the timing and magnitude of divergence within species, and is certain to provide greater insight into pollen dispersal, migration patterns and evolutionary dynamics in plants. [source] Pollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscapeMOLECULAR ECOLOGY, Issue 8 2008THOR R. HANSON Abstract In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion. [source] Powers of discerning: challenges to understanding dispersal processes in natural populationsMOLECULAR ECOLOGY, Issue 23 2007RODNEY J. DYER In this issue of Molecular Ecology, authors Robledo-Arnuncio & Garcia present a compelling approach for quantifying seed dispersal in plant populations. Building upon methods previously used for quantification of pollen dispersal, the authors not only examine the behaviour of the model with respect to sample sizes, dispersal distance, and the kurtosis of the dispersal function but also provide an empirical example using Prunus mahaleb. [source] Plant dispersal, neighbourhood size and isolation by distanceMOLECULAR ECOLOGY, Issue 18 2007BRYAN K. EPPERSON Abstract A theoretical relationship between isolation by distance or spatial genetic structure (SGS) and seed and pollen dispersal is tested using extensive spatial-temporal simulations. Although for animals Wright's neighbourhood size has been ascertained also, where is the axial variance of distances between parents and offspring, and it was recently confirmed that when dispersal of females and males differ, the situation for plants had not been established. This article shows that for a very wide range of conditions, neighbourhood size defined by Crawford's formula fully determines SGS, even when dispersal variances of seed () and pollen () differ strongly. Further, self-fertilization with rate s acts as zero-distance pollen dispersal, and fully determines SGS, for most cases where there are both likely parameter values and substantial SGS. Moreover, for most cases, there is a loglinear relationship, I(1) = 0.587 , 0.117 ln(Ne), between SGS, as measured by I(1), Moran's coefficient for adjacent individuals, and Ne. However, there are several biologically significant exceptions, namely for very low or large Ne, SGS exceeds the loglinear values. There are also important exceptions to Crawford's formula. First, plants with low seed dispersal, high outcross pollen dispersal and high selfing rate show larger SGS than predicted. Second, in plants with very low (near zero) seed dispersal, selfing decreases SGS, opposite expectations. Finally, in some cases seed dispersal is more critical than pollen dispersal, in a manner inconsistent with Crawford's formula. [source] Seasonal changes in pollinator activity influence pollen dispersal and seed production of the alpine shrub Rhododendron aureum (Ericaceae)MOLECULAR ECOLOGY, Issue 4 2006A. S. HIRAO Abstract In alpine ecosystems, microscale variation in snowmelt timing often causes different flowering phenology of the same plant species and seasonal changes in pollinator activity. We compared the variations in insect visitation, pollen dispersal, mating patterns, and sexual reproduction of Rhododendron aureum early and late in the flowering season using five microsatellites. Insects visiting the flowers were rare early in the flowering season (mid-June), when major pollinators were bumblebee queens and flies. In contrast, frequent visitations by bumblebee workers were observed late in the season (late July). Two-generation analysis of pollen pool structure demonstrated that quality of pollen-mediated gene flow was more diverse late in the season in parallel with the high pollinator activity. The effective number of pollen donors per fruit (Nep) increased late in the season (Nep = 2.2,2.7 early, 3.4,4.4 late). However, both the outcrossing rate (tm) and seed-set ratio per fruit were smaller late in the season (tm = 0.89 and 0.71, seed-set ratio = 0.52 and 0.18, early and late in the season, respectively). In addition, biparental inbreeding occurred only late in the season. We conclude that R. aureum shows contrasting patterns of pollen movement and seed production between early and late season: in early season, seed production can be high but genetically less diverse and, during late season, be reduced, possibly due to higher inbreeding and inbreeding depression, but have greater genetic diversity. Thus, more pollinator activity does not always mean more pollen movement. [source] Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree speciesMOLECULAR ECOLOGY, Issue 2 2006OLIVIER J. HARDY Abstract The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift,dispersal equilibrium. Using an approach that is based on the slope of the regression of pairwise kinship coefficients on spatial distance and estimates of the effective population density, we compare indirect gene dispersal estimates of sympatric populations of 10 tropical tree species. We re-analysed 26 data sets consisting of mapped allozyme, SSR (simple sequence repeat), RAPD (random amplified polymorphic DNA) or AFLP (amplified fragment length polymorphism) genotypes from two rainforest sites in French Guiana. Gene dispersal estimates were obtained for at least one marker in each species, although the estimation procedure failed under insufficient marker polymorphism, limited sample size, or inappropriate sampling area. Estimates generally suffered low precision and were affected by assumptions regarding the effective population density. Averaging estimates over data sets, the extent of gene dispersal ranged from 150 m to 1200 m according to species. Smaller gene dispersal estimates were obtained in species with heavy diaspores, which are presumably not well dispersed, and in populations with high local adult density. We suggest that limited seed dispersal could indirectly limit effective pollen dispersal by creating higher local tree densities, thereby increasing the positive correlation between pollen and seed dispersal distances. We discuss the potential and limitations of our indirect estimation procedure and suggest guidelines for future studies. [source] Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant populationsMOLECULAR ECOLOGY, Issue 8 2005JAROSLAW BURCZYK Abstract Assessment of contemporary pollen-mediated gene flow in plants is important for various aspects of plant population biology, genetic conservation and breeding. Here, through simulations we compare the two alternative approaches for measuring pollen-mediated gene flow: (i) the neighborhood model , a representative of parentage analyses, and (ii) the recently developed twogener analysis of pollen pool structure. We investigate their properties in estimating the effective number of pollen parents (Nep) and the mean pollen dispersal distance (,). We demonstrate that both methods provide very congruent estimates of Nep and ,, when the methods' assumptions considering the shape of pollen dispersal curve and the mating system follow those used in data simulations, although the neighborhood model exhibits generally lower variances of the estimates. The violations of the assumptions, especially increased selfing or long-distance pollen dispersal, affect the two methods to a different degree; however, they are still capable to provide comparable estimates of Nep. The neighborhood model inherently allows to estimate both self-fertilization and outcrossing due to the long-distance pollen dispersal; however, the twogener method is particularly sensitive to inflated selfing levels, which in turn may confound and suppress the effects of distant pollen movement. As a solution we demonstrate that in case of twogener it is possible to extract the fraction of intraclass correlation that results from outcrossing only, which seems to be very relevant for measuring pollen-mediated gene flow. The two approaches differ in estimation precision and experimental efforts but they seem to be complementary depending on the main research focus and type of a population studied. [source] Variation in pollen dispersal between years with different pollination conditions in a tropical emergent treeMOLECULAR ECOLOGY, Issue 11 2004T. KENTA Abstract We examined differences in pollen dispersal efficiency between 2 years in terms of both spatial dispersal range and genetic relatedness of pollen in a tropical emergent tree, Dipterocarpus tempehes. The species was pollinated by the giant honeybee (Apis dorsata) in a year of intensive community-level mass-flowering or general flowering (1996), but by several species of moths in a year of less-intensive general flowering (1998). We carried out paternity analysis based on six DNA microsatellite markers on a total of 277 mature trees forming four spatially distinct subpopulations in a 70 ha area, and 147 and 188 2-year-old seedlings originating from seeds produced in 1996 and 1998 (cohorts 96 and 98, respectively). Outcrossing rates (0.93 and 0.96 for cohorts 96 and 98, respectively) did not differ between years. Mean dispersal distances (222 and 192 m) were not significantly different between the 2 years but marginally more biased to long distance in 1996. The mean relatedness among cross-pollinated seedlings sharing the same mothers in cohort 96 was lower than that in cohort 98. This can be attributed to the two facts that the proportion of intersubpopulations pollen flow among cross-pollination events was marginally higher in cohort 96 (44%) than in cohort 98 (33%), and that mature trees within the same subpopulations are genetically more related to each other than those between different subpopulations. We conclude that D. tempehes maintained effective pollen dispersal in terms of outcrossing rate and pollen dispersal distance in spite of the large difference in foraging characteristics between two types of pollinators. In terms of pollen relatedness, however, a slight difference was suggested between years in the level of biparental inbreeding. [source] Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levelsMOLECULAR ECOLOGY, Issue 3 2004Kevin K. S. Ng Abstract Analyses of the spatial distribution pattern, spatial genetic structure and of genetic diversity were carried out in two tropical tree species with contrasting breeding systems and different ploidy levels using a 50-ha demographic plot in a lowland dipterocarp forest in Peninsular Malaysia. Shorea leprosula is a diploid and predominantly outcrossed species, whereas S. ovalis ssp. sericea is an autotetraploid species with apomictic mode of reproduction. Genetic diversity parameters estimated for S. leprosula using microsatellite were consistently higher than using allozyme. In comparisons with S. leprosula and other tropical tree species, S. ovalis ssp. sericea also displayed relatively high levels of genetic diversity. This might be explained by the lower pressure of genetic drift due to tetrasomic inheritance, and for autotetraploids each locus can accommodate up to four different alleles and this allows maintenance of more alleles at individual loci. The observed high levels of genetic diversity in S. ovalis ssp. sericea can also be due to a random retention of more heterogeneous individuals in the past, and the apomictic mode of reproduction might be an evolutionary strategy, which allows the species to maintain high levels of genetic diversity. The spatial distribution pattern analyses of both species showed significant levels of aggregation at small and medium but random distribution at the big diameter-class. The decrease in magnitude of spatial aggregation from small- to large-diameter classes might be due to compensatory mortality during recruitment and survival under competitive thinning process. Spatial genetic structure analyses for both species revealed significant spatial genetic structure for short distances in all the three diameter-classes. The magnitude of spatial genetic structure in both species was observed to be decreasing from smaller- to larger-diameter classes. The high spatial genetic structuring observed in S. ovalis ssp. sericea at the small-diameter class is due primarily to limited seed dispersal and apomictic mode of reproduction. The similar observation in S. leprosula, however, can be explained by limited seed and pollen dispersal, which supports further the fact that the species is pollinated by weak fliers, mainly of Thrips and Megalurothrips in the lowland dipterocarp forest. [source] A set of polymorphic microsatellites for Vochysia ferruginea, a promising tree for land reclamation in the NeotropicsMOLECULAR ECOLOGY RESOURCES, Issue 3 2002A. J. Lowe Abstract Vochysia ferruginea Mart. (Vochysiaceae) is a gap colonist of Neotropical forest. Because of its high tolerance of low-nutrient acidic conditions and high aluminium and iron concentrations, and its high potential seed and pollen dispersal, it is a promising timber species for commercial development as reclaimed forest on degraded land. We present here primer sequences for 10 polymorphic simple sequence repeat (SSR) loci for use with V. ferruginea to assess fine scale genetic structure and gene flow dynamics. [source] A set of polymorphic microsatellites for Vochysia ferruginea, a promising tree for land reclamation in the NeotropicsMOLECULAR ECOLOGY RESOURCES, Issue 2 2002A. J. Lowe Abstract Vochysia ferruginea Mart. (Vochysiaceae) is a gap colonist of Neotropical forest. As a result of its high tolerance of low-nutrient acidic conditions and high aluminium and iron concentrations, and its high potential seed and pollen dispersal, it is a promising timber species for commercial development as regenerated or reclaimed forest on degraded land. We present here the primer sequences for 10 polymorphic simple sequence repeat loci for use with V. ferruginea to assess fine-scale genetic structure and gene flow dynamics. [source] Stability of the cleistogamous trait during the flowering period of oilseed rapePLANT BREEDING, Issue 1 2010M. Leflon With 2 figures and 4 tables Abstract At the field scale, the co-existence of different farming production systems requires strategies to prevent gene flow between adjacent crops. Oilseed rape produces pollen dispersed by wind and insects and the risks of pollen mediated gene flow are significant for this crop. Cleistogamy, the trait of non-opening flowers, could be used to reduce pollen flow. Cleistogamous oilseed rape genotypes were obtained by INRA in France and were bred in order to improve the stability of this trait. In this paper, we examine the reliability of the cleistogamous trait for two inbred lines. The flower opening level was measured at different dates during the flowering period in six field experiments (three sites × 2 years). The results showed that some flowers were partially opened with rates varying from 0.5% to 33% principally depending on genotypes, trials (site and year) and recording dates. Given that other studies have shown that cleistogamy could reduce pollen dispersal, we consider that, even when partially unstable, cleistogamy could be beneficially used in combination with other means in a containment strategy. [source] |