Polarization Resistances (polarization + resistance)

Distribution by Scientific Domains


Selected Abstracts


Monitoring the corrosion and remediation of reinforced concrete on-site: An alternative approach

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 4 2005
N. Birbilis
Abstract Difficulties associated with the interpretation of site data collected over long periods of time from commonly used electrochemical corrosion monitoring techniques often make it difficult to assess the corrosion of reinforcing steel. An alternative approach for the interpretation of data is proposed, based on a model of the quality of passive film upon the steel surface. This model leads to a representation of the corrosion state by means of the relationship, over a long period of time, of the corrosion potential and the logarithm of the Linear Polarization Resistance, since both are functions inter alia of corrosion rate. It is shown that for the reinforced concrete panels tested, data points representing this relationship closely fitted a family of results; allowing the development of a "monitoring control diagram", MCD. The MCD reveals that for a fixed geometry and experimental conditions, a relationship between the corrosion potential and polarization resistance of steel exists, facilitating a useful monitoring tool for assessment of both the corrosion and remediation of reinforced concrete structures. Particular emphasis is placed on the latter in this work. [source]


How good are the Electrodes we use in PEFC?

FUEL CELLS, Issue 3 2004
M. Eikerling
Abstract Basically, companies and laboratories implement production methods for their electrodes on the basis of experience, technical capabilities and commercial preferences. But how does one know whether they have ended up with the best possible electrode for the components used? What should be the (i) optimal thickness of the catalyst layer? (ii) relative amounts of electronically conducting component (catalyst, with support , if used), electrolyte and pores? (iii) "particle size distributions" in these mesophases? We may be pleased with our MEAs, but could we make them better? The details of excellently working MEA structures are typically not a subject of open discussion, also hardly anyone in the fuel cell business would like to admit that their electrodes could have been made much better. Therefore, we only rarely find (far from systematic) experimental reports on this most important issue. The message of this paper is to illustrate how strongly the MEA morphology could affect the performance and to pave the way for the development of the theory. Full analysis should address the performance at different current densities, which is possible and is partially shown in this paper, but vital trends can be demonstrated on the linear polarization resistance, the signature of electrode performance. The latter is expressed through the minimum number of key parameters characterizing the processes taking place in the MEA. Model expressions of the percolation theory can then be used to approximate the dependence on these parameters. The effects revealed are dramatic. Of course, the corresponding curves will not be reproduced literally in experiments, since these illustrations use crude expressions inspired by the theory of percolation on a regular lattice, whereas the actual mesoscopic architecture of MEA is much more complicated. However, they give us a flavour of reserves that might be released by smart MEA design. [source]


Optimized La0.6Sr0.4CoO3,, Thin-Film Electrodes with Extremely Fast Oxygen-Reduction Kinetics

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
Judith Januschewsky
Abstract La0.6Sr0.4CoO3,, (LSC) thin-film electrodes are prepared on yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition at different deposition temperatures. The decrease of the film crystallinity, occurring when the deposition temperature is lowered, is accompanied by a strong increase of the electrochemical oxygen exchange rate of LSC. For more or less X-ray diffraction (XRD)-amorphous electrodes deposited between ca. 340 and 510,°C polarization resistances as low as 0.1,, cm2 can be obtained at 600,°C. Such films also exhibit the best stability of the polarization resistance while electrodes deposited at higher temperatures show a strong and fast degradation of the electrochemical kinetics (thermal deactivation). Possible reasons for this behavior and consequences with respect to the preparation of high-performance solid oxide fuel cell (SOFC) cathodes are discussed. [source]


Effect of Nickel Oxide/Yttria-Stabilized Zirconia Anode Precursor Sintering Temperature on the Properties of Solid Oxide Fuel Cells

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2000
Søren Primdahl
An NiO/yttria-stabilized zirconia (YSZ) layer sintered at temperatures between 1100° and 1500°C onto dense YSZ electrolyte foils forms the precursor structure for a porous Ni/YSZ cermet anode for solid oxide fuel cells. Conflicting requirements for the electrochemical performance and mechanical strength of such cells are investigated. A minimum polarization resistance of 0.09 ,.cm2at 1000°C in moist hydrogen is obtained for sintering temperatures of 1300°,1400°C. The mechanical strength of the cells decreases with increased sintering temperature because of the formation of channel cracks in the electrode layers, originating in a thermal expansion coefficient mismatch between the layers. [source]


Comparison of electrochemical techniques during the corrosion of X52 pipeline steel in the presence of sulfate reducing bacteria (SRB)

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 10 2005
R. Galvan-Martinez
Abstract This work compares three electrochemical techniques, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN), used in the study of corrosion of X52 steel samples in an environment containing a culture of sulfate reducing bacteria (SRB). The study emphasizes the different electrochemical information obtained when using these techniques in microbiologically influenced corrosion (MIC) studies. [source]


Monitoring the corrosion and remediation of reinforced concrete on-site: An alternative approach

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 4 2005
N. Birbilis
Abstract Difficulties associated with the interpretation of site data collected over long periods of time from commonly used electrochemical corrosion monitoring techniques often make it difficult to assess the corrosion of reinforcing steel. An alternative approach for the interpretation of data is proposed, based on a model of the quality of passive film upon the steel surface. This model leads to a representation of the corrosion state by means of the relationship, over a long period of time, of the corrosion potential and the logarithm of the Linear Polarization Resistance, since both are functions inter alia of corrosion rate. It is shown that for the reinforced concrete panels tested, data points representing this relationship closely fitted a family of results; allowing the development of a "monitoring control diagram", MCD. The MCD reveals that for a fixed geometry and experimental conditions, a relationship between the corrosion potential and polarization resistance of steel exists, facilitating a useful monitoring tool for assessment of both the corrosion and remediation of reinforced concrete structures. Particular emphasis is placed on the latter in this work. [source]


Corrosion of some selected ceramic alloys used in fixed partial dentures and their postsolder joints in a synthetic neutral saliva

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2009
Pascal De March
The electrochemical behavior of several alloys used in the frameworks of fixed partial dentures and their corresponding postsolders was studied in artificial saliva as a function of chemical composition. Open circuit potentials and polarization resistances were measured. The general electrochemical behaviors between the cathodic domain and the oxidation of solvent were characterized using cyclic polarization. The possible galvanic corrosion of coupled parent and postsolder alloys was also studied. The polarization resistances were high or very high. During immersion, the noblest alloys stayed in the immunity domains of their base elements, whereas Ni,Cr alloys were quickly passivated. The oxidation of the noble elements occurred only when the alloys were exposed to very high potentials solely achievable by artificial means. However, problems of galvanic corrosion may occur between an alloy and its postsolder joint if they are both exposed to saliva. Such corrosion may lead to a weakening of the framework. The parent alloy was often potentially affected by such corrosion but with low exchange currents. [source]


Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid Oxide Fuel Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 24 2009
Jongsik Yoon
Abstract A thin layer of a vertically aligned nanocomposite (VAN) structure is deposited between the electrolyte, Ce0.9Gd0.1O1.95 (CGO), and the thin-film cathode layer, La0.5Sr0.5CoO3 (LSCO), of a thin-film solid-oxide fuel cell (TFSOFC). The self-assembled VAN nanostructure contains highly ordered alternating vertical columns of CGO and LSCO formed through a one-step thin-film deposition process that uses pulsed laser deposition. The VAN structure significantly improves the overall performance of the TFSOFC by increasing the interfacial area between the electrolyte and cathode. Low cathode polarization resistances of 9,×,10,4 and 2.39,, were measured for the cells with the VAN interlayer at 600 and 400,°C, respectively. Furthermore, anode-supported single cells with LSCO/CGO VAN interlayer demonstrate maximum power densities of 329, 546, 718, and 812,mW cm,2 at 550, 600, 650, and 700,°C, respectively, with an open-circuit voltage (OCV) of 1.13,V at 550,°C. The cells with the interlayer triple the overall power output at 650,°C compared to that achieved with the cells without an interlayer. The binary VAN interlayer could also act as a transition layer that improves adhesion and relieves both thermal stress and lattice strain between the cathode and the electrolyte. [source]


Optimized La0.6Sr0.4CoO3,, Thin-Film Electrodes with Extremely Fast Oxygen-Reduction Kinetics

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
Judith Januschewsky
Abstract La0.6Sr0.4CoO3,, (LSC) thin-film electrodes are prepared on yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition at different deposition temperatures. The decrease of the film crystallinity, occurring when the deposition temperature is lowered, is accompanied by a strong increase of the electrochemical oxygen exchange rate of LSC. For more or less X-ray diffraction (XRD)-amorphous electrodes deposited between ca. 340 and 510,°C polarization resistances as low as 0.1,, cm2 can be obtained at 600,°C. Such films also exhibit the best stability of the polarization resistance while electrodes deposited at higher temperatures show a strong and fast degradation of the electrochemical kinetics (thermal deactivation). Possible reasons for this behavior and consequences with respect to the preparation of high-performance solid oxide fuel cell (SOFC) cathodes are discussed. [source]


Fabrication and Characterization of Anode-Supported Tubular Solid-Oxide Fuel Cells by Slip Casting and Dip Coating Techniques

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2009
Lan Zhang
High-performance anode-supported tubular solid-oxide fuel cells (SOFCs) have been successfully developed and fabricated using slip casting, dip coating, and impregnation techniques. The effect of a dispersant and solid loading on the viscosity of the NiO/Y2O3,ZrO2 (NiO/YSZ) slurry is investigated in detail. The viscosity of the slurry was found to be minimum when the dispersant content was 0.6 wt% of NiO/YSZ. The effect of sintering temperature on the shrinkage and porosity of the anode tubes, densification of the electrolyte, and performance of the cell at different solid loadings is also investigated. A Ni/YSZ anode-supported tubular cell fabricated from the NiO/YSZ slurry with 65 wt% solid loading and sintered at 1380°C produced a peak power output of ,491 and ,376 mW/cm2 at 800°C in wet H2 and CH4, respectively. With the impregnation of Ce0.8Gd0.2O2 (GDC) nanoparticles, the peak power density increased to ,1104 and ,770 mW/cm2 at 800°C in wet H2 and CH4, respectively. GDC impregnation considerably enhances the electrochemical performance of the cell and significantly reduces the ohmic and polarization resistances of thin solid electrolyte cells. [source]


Thin Yttrium-Stabilized Zirconia Electrolyte Solid Oxide Fuel Cells by Centrifugal Casting

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2002
Jiang Liu
A centrifugal casting technique was developed for depositing thin 8-mol%-yttrium-stabilized zirconia (YSZ) electrolyte layers on porous NiO-YSZ anode substrates. After the bilayers were cosintered at 1400°C, dense pinhole-free YSZ coatings with thicknesses of ,25 ,m were obtained, while the Ni-YSZ retained porosity. After La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Ce0.9Gd0.1O1.95 (GDC) or La0.8Sr0.2MnO3 (LSM)-YSZ cathodes were deposited, single SOFCs produced near-theoretical open-circuit voltages and power densities of ,1 W/cm2 at 800°C. Impedance spectra measured during cell tests showed that polarization resistances accounted for ,70%,80% of the total cell resistance. [source]


Evaluation of 08CH18N10T stainless steel corrosion in subcritical water by electrochemical noise analysis

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 9 2008
P. Ku
Abstract The corrosion behaviour of pressurized water reactor (PWR) steam generator tube material (08CH18N10T steel) was studied by electrochemical noise (EN) measurements and electrochemical impedance spectroscopy in high-temperature water at 280,°C and 8 MPa. Long-term measurements were performed in two electrolytes: (i) deionised water alkalized to pH25,=,9.5 by KOH; (ii) the same electrolyte with 200 ppm of chlorides added (as KCl). The noise data were processed by two filtering methods and the noise resistance and spectral noise resistance values were calculated. Different contributions to the total impedance were identified and the polarization resistance values were calculated from EIS data. Noise and polarization resistances were compared and the influence of filtering methods was discussed. Instantaneous corrosion data were transformed to integral ones and comparison with mean corrosion current estimated from the oxide thickness was made. It was confirmed that the crucial point of EN analysis is selection of proper cut-off frequency in high-pass fast Fourier transform (HP-FFT). [source]