Home About us Contact | |||
Point Mutants (point + mutant)
Selected AbstractsA point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002S. Hulo Abstract The growth-associated protein GAP-43 (or neuromodulin or B-50) plays a critical role during development in mechanisms of axonal growth and formation of synaptic networks. At later times, GAP-43 has also been implicated in the regulation of synaptic transmission and properties of plasticity such as long-term potentiation. In a molecular approach, we have analyzed transgenic mice overexpressing different mutated forms of GAP-43 or deficient in GAP-43 to investigate the role of the molecule in short-term and long-term plasticity. We report that overexpression of a mutated form of GAP-43 that mimics constitutively phosphorylated GAP-43 results in an enhancement of long-term potentiation in CA1 hippocampal slices. This effect is specific, because LTP was affected neither in transgenic mice overexpressing mutated forms of non-phosphorylatable GAP-43 nor in GAP-43 deficient mice. The increased LTP observed in transgenic mice expressing a constitutively phosphorylated GAP-43 was associated with an increased paired-pulse facilitation as well as an increased summation of responses during high frequency bursts. These results indicate that, while GAP-43 is not necessary for LTP induction, its phosphorylation may regulate presynaptic properties, thereby affecting synaptic plasticity and the induction of LTP. [source] The first CH domain of affixin activates Cdc42 and Rac1 through ,PIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factorGENES TO CELLS, Issue 3 2004Wataru Mishima Rho GTPases, Cdc42 and Rac1, play pivotal roles in cell migration by efficiently integrating cell-substrate adhesion and actin polymerization. Although it has been suggested that integrins stimulate these Rho GTPases via some of integrin binding proteins such as focal adhesion kinase (FAK) and paxillin, the precise molecular mechanism is largely unknown. In this study, we showed that the over-expression of RP1 corresponding to the first CH domain (CH1) of affixin, an integrin-linked kinase (ILK)-binding protein, induced a significant actin reorganization in MDCK cells by activating Cdc42/Rac1. Affixin full length and RP1 co-immunoprecipitated with ,PIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factor (GEF), and they co-localized at the tips of lamellipodia in motile cells. The involvement of ,PIX in the RP1-induced Cdc42 activation was demonstrated by the significant dominant negative effect of a point mutant of ,PIX, ,PIX (L383R, L384S), lacking GEF activity. Our data strongly support that ILK and affixin provide a novel signalling pathway that links integrin signalling to Cdc42/Rac1 activation. [source] Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthusMOLECULAR MICROBIOLOGY, Issue 6 2006Emily A. Stein Summary Myxococcus xanthus has a complex life cycle that involves vegetative growth and development. Previously, we described the espAB locus that is involved in timing events during the initial stages of fruiting body formation. Deletion of espA caused early aggregation and sporulation, whereas deletion of espB caused delayed aggregation and sporulation resulting in reduced spore yields. In this study, we describe two genes, pktA5 and pktB8, that flank the espAB locus and encode Ser/Thr protein kinase (STPK) homologues. Cells deficient in pktA5 or pktB8 formed translucent mounds and produced low spore yields, similar in many respects to espB mutants. Double mutant analysis revealed that espA was epistatic to pktA5 and pktB8 with respect to aggregation and fruiting body morphology, but that pktA5 and pktB8 were epistatic to espA with respect to sporulation efficiency. Expression profiles of pktA5,lacZ and pktB8,lacZ fusions and Western blot analysis showed that the STPKs are expressed under vegetative and developmental conditions. In vitro kinase assays demonstrated that the RD kinase, PktA5, autophosphorylated on threonine residue(s) and phosphorylated the artificial substrate, myelin basic protein. In contrast, autophosphorylation of the non-RD kinase, PktB8, was not observed in vitro; however, the phenotype of a pktB8 kinase-dead point mutant resembled the pktB8 deletion mutant, indicating that this residue was important for function and that it likely functions as a kinase in vivo. Immunoprecipitation of Tap-tagged PktA5 and PktB8 revealed an interaction with EspA during development in M. xanthus. These results, taken together, suggest that PktA5 and PktB8 are STPKs that function during development by interacting with EspA and EspB to regulate M. xanthus development. [source] Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1MOLECULAR MICROBIOLOGY, Issue 3 2000Nan Wang Escherichia coli CspA, a major cold shock protein, is dramatically induced upon temperature downshift. As it binds co-operatively to single-stranded DNA (ssDNA) and RNA without apparent sequence specificity, it has been proposed that CspA acts as an RNA chaperone to facilitate transcription and translation at low temperature. CspA consists of a five-stranded ,-barrel structure containing two RNA-binding motifs, RNP1 and RNP2. Eukaryotic Y-box proteins, such as human YB-1, are a family of nucleic acid-binding proteins that share a region of high homology with CspA (43% identity), termed the cold shock domain (CSD). Their cellular functions are very diverse and are associated with growth-related processes. Here, we replaced the six-residue loop region of CspA between the ,3 and ,4 strands with the corresponding region of the CSD of human YB-1 protein. The resulting hybrid protein became capable of binding to double-stranded DNA (dsDNA) in addition to ssDNA and RNA. The dsDNA-binding ability of an RNP1 point mutant (F20L) of the hybrid was almost unchanged. On the other hand, the dsDNA-binding ability of the hybrid protein was abolished in high salt concentrations in contrast to its ssDNA-binding ability. These results indicate that the loop region between the ,3 and ,4 strands of Y-box proteins, which is a little longer and more basic than that of CspA, plays an important role in their binding to dsDNA. [source] Precursor complex structure of pseudouridine synthase TruB suggests coupling of active site perturbations to an RNA-sequestering peripheral protein domainPROTEIN SCIENCE, Issue 8 2005Charmaine Hoang Abstract The pseudouridine synthase TruB is responsible for the universally conserved post-transcriptional modification of residue 55 of elongator tRNAs. In addition to the active site, the "thumb," a peripheral domain unique to the TruB family of enzymes, makes extensive interactions with the substrate. To coordinate RNA binding and release with catalysis, the thumb may be able to sense progress of the reaction in the active site. To establish whether there is a structural correlate of communication between the active site and the RNA-sequestering thumb, we have solved the structure of a catalytically inactive point mutant of TruB in complex with a substrate RNA, and compared it to the previously determined structure of an active TruB bound to a reaction product. Superposition of the two structures shows that they are extremely similar, except in the active site and, intriguingly, in the relative position of the thumb. Because the two structures were solved using isomorphous crystals, and because the thumb is very well ordered in both structures, the displacement of the thumb we observe likely reflects preferential propagation of active site perturbations to this RNA-binding domain. One of the interactions between the active site and the thumb involves an active site residue whose hydrogen-bonding status changes during the reaction. This may allow the peripheral RNA-binding domain to monitor progress of the pseudouridylation reaction. [source] Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in riceTHE PLANT JOURNAL, Issue 1 2010Hyeonso Ji Summary Although susceptibility to seed shattering causes severe yield loss during cereal crop harvest, it is an adaptive trait for seed dispersal in wild plants. We previously identified a recessive shattering locus, sh-h, from the rice shattering mutant line Hsh that carries an enhanced abscission layer. Here, we further mapped sh-h to a 34-kb region on chromosome 7 by analyzing 240 F2 plants and five F3 lines from the cross between Hsh and Blue&Gundil. Hsh had a point mutation at the 3, splice site of the seventh intron within LOC_Os07g10690, causing a 15-bp deletion of its mRNA as a result of altered splicing. Two transferred DNA (T-DNA) insertion mutants and one point mutant exhibited the enhanced shattering phenotype, confirming that LOC_Os07g10690 is indeed the sh-h gene. RNA interference (RNAi) transgenic lines with suppressed expression of this gene exhibited greater shattering. This gene, which encodes a protein containing a conserved carboxy-terminal domain (CTD) phosphatase domain, was named Oryza sativa CTD phosphatase-like 1 (OsCPL1). Subcellular localization and biochemical analysis revealed that the OsCPL1 protein is a nuclear phosphatase, a common characteristic of metazoan CTD phosphatases involved in cell differentiation. These results demonstrate that OsCPL1 represses differentiation of the abscission layer during panicle development. [source] Structural asymmetry and intersubunit communication in muscle creatine kinaseACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2007Jeffrey F. Ohren The structure of a transition-state analog complex of a highly soluble mutant (R134K) of rabbit muscle creatine kinase (rmCK) has been determined to 1.65,Å resolution in order to elucidate the structural changes that are required to support and regulate catalysis. Significant structural asymmetry is seen within the functional homodimer of rmCK, with one monomer found in a closed conformation with the active site occupied by the transition-state analog components creatine, MgADP and nitrate. The other monomer has the two loops that control access to the active site in an open conformation and only MgADP is bound. The N-terminal region of each monomer makes a substantial contribution to the dimer interface; however, the conformation of this region is dramatically different in each subunit. Based on this structural evidence, two mutational modifications of rmCK were conducted in order to better understand the role of the amino-terminus in controlling creatine kinase activity. The deletion of the first 15 residues of rmCK and a single point mutant (P20G) both disrupt subunit cohesion, causing the dissociation of the functional homodimer into monomers with reduced catalytic activity. This study provides support for a structural role for the amino-terminus in subunit association and a mechanistic role in active-site communication and catalytic regulation. [source] Characterization of the mouse adenylyl cyclase type VIII gene promoter: regulation by cAMP and CREBEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2002Jennifer R. Chao Abstract Adenylyl cyclase (AC) type VIII has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. In the present study, we directly examined the role for the transcription factor CREB (cAMP response element binding protein) in regulating ACVIII expression by cloning a 5.2 kilobase region upstream of the translation start site of the mouse ACVIII gene. Analysis of this fragment revealed consensus elements for several transcription factors, including a canonical cAMP response element (CRE) in close proximity to the transcription initiation region. Next, ACVIII promoter activity was studied in two neural-derived cell lines and in primary cultures of rat striatal neurons. Activation of the cAMP pathway by forskolin treatment increased promoter activity, and a series of deletion and point mutants demonstrated that this activation is mediated specifically via the canonical CRE site. Gel shift assays confirmed that this site can bind CREB and several CREB family proteins. Further, activation of the ACVIII promoter by forskolin was potentiated by expression of a constitutively active form of CREB, CREB-VP16, whereas it was inhibited by expression of a dominant-negative form of CREB, A-CREB. Finally, over-expression of CREB in vivo, by viral-mediated gene transfer, induced ACVIII promoter activity in the brains of ACVIII-LacZ transgenic mice. These results suggest that the ACVIII gene is regulated by CREB in vitro and in vivo and that this regulation may contribute to CREB-dependent neural plasticity. [source] Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulenceFEMS YEAST RESEARCH, Issue 5 2008Veena Menon Abstract The Ssk1p response regulator of Candida albicans is required for oxidant adaptation, survival in human neutrophils, and virulence in a disseminated murine model of candidiasis. We have previously shown that the amino acid residues D556 and D513 of the Ssk1p receiver domain are critical to the Ssk1p in oxidant stress adaptation and morphogenesis. Herein, transcriptional profiling is used to explain the oxidant sensitivity and morphogenesis defect of two point mutants (D556N and D513K, respectively) compared with a WT strain. In the D556N mutant, during oxidative stress (5 mM H2O2), a downregulation of genes associated with redox homeostasis and oxidative stress occurred, which accounted for about 5% of all gene changes, including among others, SOD1 (superoxide dismutase), CAP1 (required for some types of oxidant stress), and three genes encoding glutathione biosynthesis proteins (GLR1, GSH1, and GSH2). Mutant D513K was not sensitive to peroxide but was impaired in its yeast $/to hyphal transition. We noted downregulation of genes associated with morphogenesis and cell elongation. Virulence of each mutant was also evaluated in a rat vaginitis model of candidiasis. Clearance of an SSK1 null and the D556N mutants from the vaginal canal was significantly greater than wild type or the D513K mutant, indicating that a change in a single amino acid of the Ssk1p alters the ability of this strain to colonize the rat vaginal mucosa. [source] Global analysis of functional surfaces of core histones with comprehensive point mutantsGENES TO CELLS, Issue 1 2007Kazuko Matsubara The core histones are essential components of the nucleosome that act as global negative regulators of DNA-mediated reactions including transcription, DNA replication and DNA repair. Modified residues in the N-terminal tails are well characterized in transcription, but not in DNA replication and DNA repair. In addition, roles of residues in the core globular domains are not yet well characterized in any DNA-mediated reactions. To comprehensively understand the functional surface(s) of a core histone, we constructed 320 yeast mutant strains, each of which has a point mutation in a core histone, and identified 42 residues responsible for the suppressor of Ty (Spt - ) phenotypes, and 8, 30 and 61 residues for sensitivities to 6-azauracil (6AU), hydroxyurea (HU) and methyl-methanesulfonate (MMS), respectively. In addition to residues that affect one specific assay, residues involved in multiple reactions were found, and surprisingly, about half of them were clustered at either the nucleosome entry site, the surface required for nucleosome,nucleosome interactions in crystal packing or their surroundings. This comprehensive mutation approach was proved to be powerful for identification of the functional surfaces of a core histone in a variety of DNA-mediated reactions and could be an effective strategy for characterizing other evolutionarily conserved hub-like factors for which surface structural information is available. [source] Regions of the amino terminus of the P2X1 receptor required for modification by phorbol ester and mGluR1, receptorsJOURNAL OF NEUROCHEMISTRY, Issue 2 2009Hairuo Wen Abstract The potentiation of P2X1 receptor currents by phorbol ester (PMA) treatment and stimulation of mGluR1, receptors was sensitive to inhibition of novel forms of protein kinase C. Potentiation was also reduced by co-expression of an amino terminal P2X1 receptor minigene. Cysteine point mutants of residues Tyr16 -Gly30 were expressed in Xenopus oocytes. Peak current amplitudes to ATP for Y16C, T18C and R20C mutants were reduced, however this did not result from a decrease in surface expression of the channels. The majority of the mutants showed changes in the time-course of desensitization of ATP evoked currents indicating the important role of this region in regulation of channel properties. PMA and mGluR1, potentiation was abolished for the mutants Y16C, T18C, R20C, K27C and G30C. Minigenes incorporating either Y16C, K27C, V29C or G30C still inhibited PMA responses. However D17C, T18C or R20C mutant minigenes were no longer effective suggesting that these residues are important for interaction with regulatory factors. These results demonstrate that the conserved YXTXK/R sequence and a region with a conserved glycine residue close to the first transmembrane segment contribute to PMA and GPCR regulation of P2X1 receptors. [source] X-ray analyses of d(GCGAXAGC) containing G and T at X: the base-intercalated duplex is still stable even in point mutants at the fifth residueJOURNAL OF SYNCHROTRON RADIATION, Issue 1 2004Jiro Kondo DNA fragments containing the sequence d(GCGAAAGC) prefer to adopt a base-intercalated (zipper-like) duplex in the crystalline state. To investigate effects of point mutation at the 5th residue on the structure, two crystal structures of d(GCGAGAGC) and d(GCGATAGC) have been determined by X-ray crystallography. In the respective crystals, the two octamers related by a crystallographic two-fold symmetry are aligned in an anti-parallel fashion and associated to each other to form a duplex, suggesting that the base-intercalated duplex is stable even when the 5th residue is mutated with other bases. The sheared G3:A6 pair formation makes the two phosphate backbones closer and facilitates formation of the A-X*-X-A* base-intercalated motif. The three duplexes are assembled around the three-fold axis, and their 3rd and 4th residues are bound to the hexamine cobalt chloride. The central 5th residues are bound to another cation. [source] Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen: a novel mechanism for lipoprotein(a)-mediated inhibition of plasminogen activationJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2008N. T. FERIC Summary.,Background:,Elevated plasma concentrations of lipoprotein(a) [Lp(a)] are associated with an increased risk for thrombotic disorders. Lp(a) is a unique lipoprotein consisting of a low-density lipoprotein-like moiety covalently linked to apolipoprotein(a) [apo(a)], a homologue of the fibrinolytic proenzyme plasminogen. Several in vitro and in vivo studies have shown that Lp(a)/apo(a) can inhibit tissue-type plasminogen activator-mediated plasminogen activation on fibrin surfaces, although the mechanism of inhibition by apo(a) remains controversial. Essential to fibrin clot lysis are a number of plasmin-dependent positive feedback reactions that enhance the efficiency of plasminogen activation, including the plasmin-mediated conversion of Glu-plasminogen to Lys-plasminogen. Objective:,Using acid,urea gel electrophoresis to resolve the two forms of radiolabeled plasminogen, we determined whether apo(a) is able to inhibit Glu-plasminogen to Lys-plasminogen conversion. Methods:,The assays were performed in the absence or presence of different recombinant apo(a) species, including point mutants, deletion mutants and variants that represent greater than 90% of the known apo(a) isoform sizes. Results:,Apo(a) substantially suppressed Glu-plasminogen conversion. Critical roles were identified for the kringle IV types 5,9 and kringle V; contributory roles for sequences within the amino-terminal half of the molecule were also observed. Additionally, with the exception of the smallest naturally-occurring isoform of apo(a), isoform size was found not to contribute to the inhibitory capacity of apo(a). Conclusion:,These findings underscore a novel contribution to the understanding of Lp(a)/apo(a)-mediated inhibition of plasminogen activation: the ability of the apo(a) component of Lp(a) to inhibit the key positive feedback step of plasmin-mediated Glu-plasminogen to Lys-plasminogen conversion. [source] Liver carcinogen aflatoxin B1 as an inducer of mitotic recombination in a human cell lineMOLECULAR CARCINOGENESIS, Issue 3 2001Peter Markus Stettler Abstract The mycotoxin aflatoxin B1 (AFB1) is one of the most potent rodent and human liver carcinogens. Upon cytochrome P450,specific metabolism, it induces mutations as well as mitotic recombination events in in vitro systems. We have found that in the lower eukaryote yeast, the recombinagenic activity of AFB1 surpasses its mutagenic activity, and we speculated on possible consequences in terms of the mechanism of liver carcinogenesis. In this study we investigated whether the recombinagenic activity of AFB1 also would be identified in human cells. To address this question, we followed the fate of a heterozygous thymidine kinase (tk) allele in the human lymphoblastoid cell line TK6 upon exposure to AFB1. Individual mutants that had lost tk activity were subjected to loss of heterozygosity analysis of the tk locus and its flanking markers. Fluorescence in situ hybridization analysis on chromosome 17 also was performed. In parallel, a similar analysis was performed on TK6 cells exposed to the alkylating agent N -nitrosomethylurea, a well-known classic point mutagen. Our analysis showed a difference in the molecular mechanism leading to inactivation of the tk allele upon exposure to these two mutagens. In AFB1 -exposed cells the fraction of recombination-derived mutants predominated, whereas in N -nitrosomethylurea,exposed cells the fraction of point mutants was higher. Thus, the recombinagenic activity of AFB1 previously identified in a lower eukaryote also was found in the human cell line TK6. Our data support the hypothesis that mitotic recombination represents a central mechanism of action in AFB1 -induced liver carcinogenesis. © 2001 Wiley-Liss, Inc. [source] Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolismMOLECULAR MICROBIOLOGY, Issue 4 2006Aurélia Battesti Summary Bacteria respond to nutritional stresses by producing an intracellular alarmone, guanosine 5,-(tri)diphosphate, 3,-diphosphate [(p)ppGpp], which triggers the stringent response resulting in growth arrest and expression of resistance genes. In Escherichia coli, upon fatty acid or carbon starvation, SpoT enzyme activity switches from (p)ppGpp degradation to (p)ppGpp synthesis, but the signal and mechanism for this response remain totally unknown. Here, we characterize for the first time a physical interaction between SpoT and acyl carrier protein (ACP) using affinity co-purifications and two-hybrid in E. coli. ACP, as a central cofactor in fatty acid synthesis, may be an ideal candidate as a mediator signalling starvation to SpoT. Accordingly, we show that the ACP/SpoT interaction is specific of SpoT and ACP functions because ACP does not interact with the homologous RelA protein and because SpoT does not interact with a non-functional ACP. Using truncated SpoT fusion proteins, we demonstrate further that ACP binds the central TGS domain of SpoT, consistent with a role in regulation. The behaviours of SpoT point mutants that do not interact with ACP reveal modifications of the balance between the two opposite SpoT catalytic activities thereby changing (p)ppGpp levels. More importantly, these mutants fail to trigger (p)ppGpp accumulation in response to fatty acid synthesis inhibition, supporting the hypothesis that the ACP/SpoT interaction may be involved in SpoT-dependent stress response. This leads us to propose a model in which ACP carries information describing the status of cellular fatty acid metabolism, which in turn can trigger the conformational switch in SpoT leading to (p)ppGpp accumulation. [source] Detection of Coconut cadang-cadang viroid sequences in oil and coconut palm by ribonuclease protection assayANNALS OF APPLIED BIOLOGY, Issue 1 2009G. Vadamalai Abstract A ribonuclease protection assay (RPA) has been developed for detecting Coconut cadang-cadang viroid (CCCVd) sequences. An RNA probe complementary to full-length CCCVd246 was used, terminating at nucleotide 65 in the upper conserved region, and linked to a non-viroid 5, sequence, which acted as an internal control for ribonuclease activity. Extracts from CCCVd-infected coconut (Cocos nucifera) and African oil (Elaeis guineensis) palms protected three major fragments of approximately 250, 125 and 50 nt and a variable number of minor fragments. Extracts of healthy coconut palms, Potato spindle tuber viroid -infected tomato and transfer RNA did not protect the probe. The approximately 250 nt fragment is predicted to indicate the presence of monomers and dimers of circular CCCVd246, linear CCCVd246 with the same termini as the probe and point mutants of these forms. The origin of smaller protected fragments is discussed. RPA-detected CCCVd sequences in 13 of 18 oil palms surveyed in a commercial plantation in Malaysia. Signal intensity varied between the positive oil palms and was generally lower than in coconut palms infected with CCCVd. An infection phenotype was implied but not confirmed by the observation that in a group of 10 oil palms with orange leaf spotting, 9 contained CCCVd, whereas in a group of 8 palms without orange spotting, the viroid was detected in 4. Of four coconut palms in Sri Lanka shown by dot-blot assay to contain CCCVd-related RNA, one was shown by RPA to be positive for the CCCVd246 sequence. RPA is therefore a robust and sensitive test for CCCVd sequences, and our results show that sequences closely related to CCCVd246 are not confined to the Philippines. [source] Expression, purification, crystallization and preliminary X-ray analysis of the native class C ,-lactamase from Enterobacter cloacae 908R and two mutantsACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2001J. Wouters Crystals have been obtained of the Enterobacter cloacae 908R ,-lactamase and two point mutants by the vapour-diffusion method using similar conditions [pH 9.0, polyethylene glycol (Mr = 6000) as precipitant]. The three crystal forms belong to the orthorhombic space group P21212, with roughly the same unit-cell parameters; i.e. for the wild-type crystals a = 46.46, b = 82.96, c = 95.31,Å. In the best cases, the crystals diffract to about 2.1,Å resolution on a rotating-anode X-ray source at room temperature. Co-crystallization experiments of poor substrates with the wild-type protein and the active-site serine mutant (S64C) are planned and should lead to a better understanding of the catalytic mechanism of class C ,-lactamases. [source] Molecular impact of MinK on the enantiospecific block of IKs by chromanolsBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2000C Lerche Slowly activating IKs (KCNQ1/MinK) channels were expressed in Xenopous oocytes and their sensitivity to chromanols was compared to homomeric KCNQ1 channels. To elucidate the contribution of the ,-subunit MinK on chromanol block, a formerly described chromanol HMR 1556 and its enantiomer S5557 were tested for enantio-specificity in blocking IKs and KCNQ1 as shown for the single enantiomers of chromanol 293B. Both enantiomers blocked homomeric KCNQ1 channels to a lesser extent than heteromeric IKs channels. Furthermore, we expressed both WT and mutant MinK subunits to examine the involvement of particular MinK protein regions in channel block by chromanols. Through a broad variety of MinK deletion and point mutants, we could not identify amino acids or regions where sensitivity was abolished or strikingly diminished (>2.5 fold). This could indicate that MinK does not directly take part in chromanol binding but acts allosterically to facilitate drug binding to the principal subunit KCNQ1. British Journal of Pharmacology (2000) 131, 1503,1506; doi:10.1038/sj.bjp.0703734 [source] Inhibitory effect of c-Met mutants on the formation of branching tubules by a porcine aortic endothelial cell lineCANCER SCIENCE, Issue 12 2006Marino Maemura The association of hepatocyte growth factor (HGF) with its high-affinity receptor (c-Met) has been shown to induce mitogenesis, motogenesis and morphogenesis in a variety of cell types. Various point mutations in c-Met have been identified in hereditary and sporadic papillary renal carcinomas as well as in other carcinomas. In the present study, we examined the effects of c-Met point mutations on the morphology of a porcine aortic endothelial (PAE) cell line. When cultured in three-dimensional collagen gel, PAE cells formed branching tubule structures, and HGF treatment caused breakdown of the structures and induced a scattered morphology. The exogenous expression of c-Met point mutants inhibited the formation of tubules. HGF treatment induced the formation of tubules by PAE cells expressing some c-Met mutants, but it induced the scattering of PAE cells expressing other c-Met mutants. The presence of a low concentration of a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor cancelled the inhibitory effect of the c-Met point mutations on the formation of tubules. These results suggest that c-Met point mutations affect the extracellular signal-regulated kinase (ERK) signaling required for the formation of tubules by PAE cells, and HGF binding changes the conformation of c-Met mutants, leading to the different signals required for formation of tubules and cell scattering. (Cancer Sci 2006; 97: 1343,1350) [source] |