Powdery Mildew Pathogen (powdery + mildew_pathogen)

Distribution by Scientific Domains


Selected Abstracts


Erysiphe trifolii, a newly recognized powdery mildew pathogen of pea

PLANT PATHOLOGY, Issue 4 2010
R. N. Attanayake
Diversity of powdery mildew pathogens infecting pea (Pisum sativum) in the US Pacific Northwest was investigated using both molecular and morphological techniques. Phylogenetic analyses based on rDNA ITS sequences, in combination with assessment of morphological characters, defined two groups of powdery mildews infecting pea. Group I (five field samples and three glasshouse samples) had ITS sequences 99% similar to those of Erysiphe pisi in GenBank and exhibited simple, mycelioid type of chasmothecial appendages typical of E. pisi. Erysiphe pisi is normally considered as the powdery mildew pathogen of pea. Group II (four glasshouse samples and two field samples) had ITS sequences 99% similar to those of E. trifolii and produced chasmothecia with dichotomously branched appendages similar to those of E. trifolii. There are fourteen nucleotide differences in the ITS region between the two groups. The correlation of rDNA ITS sequences with teleomorphic features for each of the two groups confirms their identity. Repeated samplings and artificial inoculations indicate that both E. pisi and E. trifolii infect pea in the US Pacific Northwest. Erysiphe trifolii is not previously known as a pathogen of pea. The existence of two distinct powdery mildew species infecting pea in both glasshouse and field environments may interfere with the powdery mildew-resistance breeding programmes, and possibly explains putative instances of breakdown of resistance in previously resistant pea breeding lines. [source]


A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling

THE PLANT JOURNAL, Issue 2 2004
Dennis A. Halterman
Summary Interactions between barley and the powdery mildew pathogen, Blumeria graminis f. sp. hordei, (Bgh) are determined by unique combinations of host resistance genes, designated Mildew-resistance locus (Ml), and cognate pathogen avirulence genes. These interactions occur both dependent and independent of Rar1 (required for Mla12 resistance) and Sgt1 (Suppressor of G-two allele of skp1), which are differentially required for diverse plant disease-resistance pathways. We have isolated two new functional Mla alleles, Rar1 -independent Mla7 and Rar1 -dependent Mla10, as well as the Mla paralogs, Mla6-2 and Mla13-2. Utilizing the inherent diversity amongst Mla -encoded proteins, we identified the only two amino acids exclusively conserved in RAR1-dependent MLA6, MLA10, MLA12, and MLA13 that differ at the corresponding position in RAR1-independent MLA1 and MLA7. Two- and three-dimensional modeling places these residues on a predicted surface of the sixth leucine-rich repeat (LRR) domain at positions distinct from those within the ,-sheets hypothesized to determine resistance specificity. Site-directed mutagenesis of these residues indicates that RAR1 independence requires the presence of an aspartate at position 721, as mutation of this residue to a structurally similar, but uncharged, asparagine did not alter RAR1 dependence. These results demonstrate that a single-amino acid substitution in the sixth MLA LRR can alter host signaling but not resistance specificity to B. graminis. [source]


Differentiation of Two Pathogens of Powdery Mildew Disease in Flowering Dogwood (Cornus florida) by PCR-mediated Method Based on ITS Sequences

JOURNAL OF PHYTOPATHOLOGY, Issue 5 2009
Ainong Shi
Abstract Two fungi, Phyllactinia guttata and Erysiphe pulchra were identified as the pathogens of powdery mildew of flowering dogwood (Cornus florida). The objective of this research was to identify and distinguish the two fungi by developing species-specific primers. The internal transcribed spacer (ITS) universal primers and a series of species-specific primers designed from the ITS regions were used to evaluate and validate the two fungi causing powdery mildew in dogwood. Four primer pairs showed specificity to P. guttata and three to E. pulchra. These species-specific primer pairs can be used as molecular markers to provide diagnostic tools for detection and differentiation of the two powdery mildew pathogens in flowering dogwood. [source]


Erysiphe trifolii, a newly recognized powdery mildew pathogen of pea

PLANT PATHOLOGY, Issue 4 2010
R. N. Attanayake
Diversity of powdery mildew pathogens infecting pea (Pisum sativum) in the US Pacific Northwest was investigated using both molecular and morphological techniques. Phylogenetic analyses based on rDNA ITS sequences, in combination with assessment of morphological characters, defined two groups of powdery mildews infecting pea. Group I (five field samples and three glasshouse samples) had ITS sequences 99% similar to those of Erysiphe pisi in GenBank and exhibited simple, mycelioid type of chasmothecial appendages typical of E. pisi. Erysiphe pisi is normally considered as the powdery mildew pathogen of pea. Group II (four glasshouse samples and two field samples) had ITS sequences 99% similar to those of E. trifolii and produced chasmothecia with dichotomously branched appendages similar to those of E. trifolii. There are fourteen nucleotide differences in the ITS region between the two groups. The correlation of rDNA ITS sequences with teleomorphic features for each of the two groups confirms their identity. Repeated samplings and artificial inoculations indicate that both E. pisi and E. trifolii infect pea in the US Pacific Northwest. Erysiphe trifolii is not previously known as a pathogen of pea. The existence of two distinct powdery mildew species infecting pea in both glasshouse and field environments may interfere with the powdery mildew-resistance breeding programmes, and possibly explains putative instances of breakdown of resistance in previously resistant pea breeding lines. [source]