Powder Diffraction Patterns (powder + diffraction_pattern)

Distribution by Scientific Domains

Kinds of Powder Diffraction Patterns

  • x-ray powder diffraction pattern


  • Selected Abstracts


    Structural study of the semimagnetic semiconductor Zn0.5Mn0.5In2Te4

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2009
    G. E. Delgado
    Abstract The semimagnetic semiconductor alloy Zn0.5Mn0.5In2Te4 was refined from an X-ray powder diffraction pattern using the Rietveld method. This compound crystallizes in the space group I42m (Nº 121), Z = 2, with unit cell parameters a = 6.1738(1) Å, c = 12.3572(4) Å, V = 471.00(2) Å3, c/a = 2.00. This material crystallizes in a stannite-type structure. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    QUALX: a computer program for qualitative analysis using powder diffraction data

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2008
    Angela Altomare
    QUALX is a new computer program for phase identification using powder diffraction data. It uses the Powder Diffraction File database, where a search for the phase best matching the experimental powder diffraction pattern is carried out. The program is characterized by a high level of automation: the traditional steps aimed at interpreting the experimental pattern before the search (background estimation, peak search, peak intensity evaluation) are executed automatically. The search may be carried out via constraints on compound name and/or chemical elements. In addition, several graphical options requested interactively enable the user to perform zero point correction evaluation, K,2 stripping and smoothing. The program, written in Fortran95 and C++, runs on PCs under the Windows XP operating system. It is supported by a very effective graphical interface. [source]


    Crystal structure prediction of organic pigments: quinacridone as an example

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2007
    N. Panina
    The structures of the ,, , and , polymorphs of quinacridone (Pigment Violet 19) were predicted using Polymorph Predictor software in combination with X-ray powder diffraction patterns of limited quality. After generation and energy minimization of the possible structures, their powder patterns were compared with the experimental ones. On this basis, candidate structures for the polymorphs were chosen from the list of all structures. Rietveld refinement was used to validate the choice of structures. The predicted structure of the , polymorph is in accordance with the experimental structure published previously. Three possible structures for the , polymorph are proposed on the basis of X-ray powder patterns comparison. It is shown that the , structure in the Cambridge Structural Database is likely to be in error, and a new , structure is proposed. The present work demonstrates a method to obtain crystal structures of industrially important pigments when only a low-quality X-ray powder diffraction pattern is available. [source]


    The combined use of Patterson and Monte Carlo methods for the decomposition of a powder diffraction pattern

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2006
    Angela Altomare
    The success of ab initio crystal structure solution by powder diffraction data is strictly related to the quality of the integrated intensity estimates. A new method that is able to improve the pattern decomposition step has been developed. It combines the inversion of a suitably modified Patterson map with the use of the Hamming codes [13,10] and [40,36] in order to explore more decomposition trials. The new approach has been introduced in EXPO2005, an updated version of EXPO2004, and successfully applied to a set of known organic and inorganic structures. [source]


    Deconvolution of instrumental aberrations for synchrotron powder X-ray diffractometry

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2003
    T. Ida
    A method to remove the effects of instrumental aberrations from the whole powder diffraction pattern measured with a high-resolution synchrotron powder diffractometer is presented. Two types of asymmetry in the peak profiles caused by (i) the axial-divergence aberration of the diffractometer (diffractometer aberration) and (ii) the aberration of the monochromator and focusing optics on the beamline (beamline aberration) are both taken into account. The method is based on the whole-pattern deconvolution by Fourier technique combined with the abscissa-scale transformation appropriate for each instrumental aberration. The experimental powder diffraction data of LaB6 (NIST SRM660) measured on beamline BL-4B2 at the Photon Factory in Tsukuba have been analysed by the method. The formula of the scale transformation for the diffractometer aberration has a priori been derived from the instrumental function with geometric parameters of the optics. The strongly deformed experimental peak profiles at low diffraction angles have been transformed to sharp peak profiles with less asymmetry by the deconvolution of the diffractometer aberration. The peak profiles obtained by the deconvolution of the diffractometer aberration were modelled by an asymmetric model profile function synthesized by the convolution of the extended pseudo-Voigt function and an asymmetric component function with an empirical asymmetry parameter, which were linearly dependent on the diffraction angle. Fairly symmetric peak profiles have been obtained by further deconvolution of the empirically determined asymmetric component of the beamline aberration. [source]


    Robust Rietveld refinement in the presence of impurity phases

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 6 2001
    W. I. F. David
    A modified least-squares analysis is presented that allows reliable structural parameters to be extracted from a powder diffraction pattern even in the presence of a substantial unmodelled impurity contribution. The algorithm is developed within the context of Bayesian probability theory. Experimental points that fall above those calculated, and are thus more probably from impurity peaks, are systematically down-weighted. This approach is illustrated with a two-phase example. [source]


    New techniques for indexing: N-TREOR in EXPO

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2000
    Angela Altomare
    Indexing of a powder diffraction pattern is still a critical point in procedures aiming at solving crystal structures from powder data. New code has been associated to the program TREOR90 in order to define an efficient peak search procedure, to modify the crystallographic decisions coded into TREOR90 to make it more exhaustive, to refine the selected unit cell automatically, and to make the entire procedure user friendly, via a graphical interface. The new program, called N-TREOR, has been integrated into the package EXPO to create a suite of programs able to provide a structural model from the analysis of the experimental pattern. N-TREOR is also available as a stand-alone program. [source]


    Observation and Characterization of Structural Phase Transitions by X-Ray Powder Diffraction

    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 6 2005
    Wulf Depmeier
    Abstract Some of the basic properties of powder diffraction are summarized after a short introduction into the theory. Then it is described phenomenologically how various kinds of structural transformations affect the powder diffraction pattern. This is achieved on emphasizing that diffraction studies on powders are statistically more sound than those on single crystals, thus allowing the reliable determination of the generic properties of a given crystal structure. [source]


    Classification of stacking faults and their stepwise elimination during the disorder , order transformation of nickel hydroxide

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 4 2006
    T. N. Ramesh
    Nickel hydroxide samples obtained by strong alkali precipitation are replete with stacking faults. The local structures of the stacking faults resemble the stacking patterns of different polytypic modifications that are theoretically possible among the layered hydroxides. This resemblance becomes a basis for the classification of stacking faults into different types. Each type of stacking fault produces a characteristic non-uniform broadening of peaks in the X-ray powder diffraction pattern of nickel hydroxide. DIFFaX simulations aid the classification and quantification of stacking faults. Hydrothermal treatment of a poorly ordered nickel hydroxide slurry at different temperatures (338,473,K) and different durations (5,48,h) shows that the stacking faults are removed in a stepwise manner. The as-precipitated sample has 17,20% stacking faults of the 3R2 variety, which evolve into the 2H2 type at 413,K. The 2H2 stacking faults persist up to 443,K. The stacking faults are completely removed only at 473,K. At this temperature an ordered ,-Ni(OH)2 phase is observed. [source]


    In-house characterization of protein powder

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2010
    Christian Grundahl Hartmann
    X-ray powder diffraction patterns of lysozyme and insulin were recorded on a standard in-house powder diffractometer. The experimental powder diffraction patterns were compared with patterns calculated from Protein Data Bank coordinate data. Good agreement was obtained by including straightforward corrections for background, unit-cell parameters, disordered bulk solvent and geometric factors. In particular the solvent correction was found crucial for a good agreement. A revised Lorentz factor was derived, which gave a minor, but significant, improvement to the fit in the low-angle region. An attempt to include calculated H-atom positions did not improve the overall fit and was abandoned. The method devised was shown to be a quick and convenient tool for distinguishing precipitates and polymorphs of proteins. [source]


    Parametric Rietveld refinement for the evaluation of powder diffraction patterns collected as a function of pressure

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2010
    Ivan Halasz
    Under the assumption that the structural parameters of a crystalline phase change `smoothly' with increasing pressure, the evolution of the parameters can be parameterized as a function of pressure using continuous monotonic functions. Four different approaches to determine the structural evolution of As2O5 with increasing pressure from a set of powder diffraction patterns collected over the pressure range from 2.5 to 19.5,GPa have been investigated. Approach (A) was the common sequential refinement of atomic coordinates with restraints on the geometry and was compared with three parameterization approaches. Approach (B) used direct parameterization by low-order polynomials of each crystallographically distinct atomic coordinate, (C) described the atoms of the asymmetric unit as a rigid body and allowed the internal degrees of freedom of the rigid body to vary with the change in pressure using rigid unit modes, and (D) described the crystal structure as a distortion of the higher-symmetry structure of As2O5 (which is here also a high-temperature phase) by using symmetry-adapted distortion modes. Approach (D) offers the possibility to directly introduce an order parameter into Rietveld refinement through an empirical power law derived from Landau theory and thus to obtain the value of the critical exponent. In contrast, the rigid-body approach did not fit the data as well. All parameterizations greatly reduce the number of required parameters. [source]


    Crystal structure prediction of organic pigments: quinacridone as an example

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2007
    N. Panina
    The structures of the ,, , and , polymorphs of quinacridone (Pigment Violet 19) were predicted using Polymorph Predictor software in combination with X-ray powder diffraction patterns of limited quality. After generation and energy minimization of the possible structures, their powder patterns were compared with the experimental ones. On this basis, candidate structures for the polymorphs were chosen from the list of all structures. Rietveld refinement was used to validate the choice of structures. The predicted structure of the , polymorph is in accordance with the experimental structure published previously. Three possible structures for the , polymorph are proposed on the basis of X-ray powder patterns comparison. It is shown that the , structure in the Cambridge Structural Database is likely to be in error, and a new , structure is proposed. The present work demonstrates a method to obtain crystal structures of industrially important pigments when only a low-quality X-ray powder diffraction pattern is available. [source]


    High-throughput powder diffraction.

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2004

    Powder pattern matching techniques, using all the experimentally measured data points, coupled with cluster analysis, fuzzy clustering and multivariate statistical methods are used, with appropriate visualization tools, to analyse a set of 27 powder diffraction patterns of alumina collected at seven different laboratories on different instruments as part of an International Center for Diffraction Data Grant-in-Aid program. In their original form, the data factor into six distinct clusters. However, when a non-linear shift of the form (where a0 and a1 are refinable constants) is applied to optimize the correlations between patterns, clustering produces a large 25-pattern set with two outliers. The first outlier is a synchrotron data set at a different wavelength from the other data, and the second is distinguished by the absence of K,2 lines, i.e. it uses Ge-monochromated incident X-rays. Fuzzy clustering, in which samples may belong to more than one cluster, is introduced as a complementary method of pinpointing problematic diffraction patterns. In contrast to the usual methodology associated with the analysis of round-robin data, this process is carried out in a routine way, with minimal user interaction or supervision, using the PolySNAP software. [source]


    Indexing of powder diffraction patterns by iterative use of singular value decomposition

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2003
    A. A. Coelho
    A fast method for indexing powder diffraction patterns has been developed for large and small lattices of all symmetries. The method is relatively insensitive to impurity peaks and missing high d -spacings: on simulated data, little effect in terms of successful indexing has been observed when one in three d -spacings are randomly removed. Comparison with three of the most popular indexing programs, namely ITO, DICVOL91 and TREOR90, has shown that the present method as implemented in the program TOPAS is more successful at indexing simulated data. Also significant is that the present method performs well on typically noisy data with large diffractometer zero errors. Critical to its success, the present method uses singular value decomposition in an iterative manner for solving linear equations relating hkl values to d -spacings. [source]


    On the efficient evaluation of Fourier patterns for nanoparticles and clusters

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 9 2006
    Antonio Cervellino
    Abstract Samples made of an isotropically oriented ensemble of atomic clusters or structures that are not large crystals (i.e. extended less than 10 periods in each direction) are at the frontier of today's material science and chemistry. Examples are nanoparticles, nanotubes, amorphous matter, polymers, and macromolecules in suspension. For such systems the computation of powder diffraction patterns (which may provide an efficient characterization) is to be performed the hard way, by summing contributions from each atom pair. This work deals with performing such computation in the most practical and efficient way. Three main points are developed: how to encode the enormous array of interatomic distances (which increase as the square or higher powers of the cluster diameter) to a much smaller array of equispaced values on a coarse grid (whose size increases linearly with the diameter); how to perform a fast computation of the diffraction pattern from this equispaced grid; how to optimize the grid step to obtain an arbitrarily small error on the computed diffraction pattern. Theory and examples are jointly developed and presented. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 995,1008, 2006 [source]


    Dehydration studies using a novel multichamber microscale fluid bed dryer with in-line near-infrared measurement

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2003
    Eetu Räsänen
    Abstract The purpose of this research was to study the effect of two process parameters (temperature and moisture content) on dehydration behavior of different materials using a novel multichamber microscale fluid bed dryer with a process air control unit and in-line near-infrared (NIR) spectroscopy. The materials studied were disodium hydrogen phosphates with three different levels of hydrate water and wet theophylline granules. Measured process parameters of fluid bed drying were logged, including in-line NIR signals. Off-line analyses consisted of X-ray powder diffraction patterns, Fourier transform NIR spectra and moisture contents of studied materials. During fluid bed drying, the stepwise dehydration of materials was observed by the water content difference of inlet and outlet air, the pressure difference over the bed, and the in-line NIR spectroscopy. The off-line analysis confirmed the state of solid materials. The temperature and the moisture content of the process air were demonstrated to be significant factors for the solid-state stability of theophylline. The presented setup is a material and cost-saving approach for studying the influence of different process parameters on dehydration behavior during pharmaceutical processing. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2074,2081, 2003 [source]


    Low-Loss Microwave Dielectrics Using Mg2(Ti1,xSnx)O4 (x=0.01,0.09) Solid Solution

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009
    Cheng-Liang Huang
    Low-loss ceramics having the chemical formula Mg2(Ti1,xSnx)O4 for x ranging from 0.01 to 0.09 have been prepared by the conventional mixed oxide route and their microwave dielectric properties have been investigated. X-ray powder diffraction patterns indicate the corundum-structured solid solutions for the prepared compounds. In addition, lattice parameters, which linearly increase from 8.4414 to 8.4441 Å with the rise of x from 0.01 to 0.09, also confirm the forming of solid solutions. By increasing x from 0.01 to 0.05, the Q×f of the specimen can be tremendously boosted from 173 000 GHz to a maximum 318 000 GHz. A fine combination of microwave dielectric properties (,r,15.57, Q×f,318 000 GHz at 10.8 GHz, ,f,,45.1 ppm/°C) was achieved for Mg2(Ti0.95Sn0.05)O4 ceramics sintered at 1390°C for 4 h. Ilmenite-structured Mg(Ti0.95Sn0.05)O3 (,r,16.67, Q×f,275 000 GHz at 10.3 GHz, ,f,,53.2 ppm/°C) was detected as a second phase. The presence of the second phase, however, would cause no significant variation in the dielectric properties of the specimen, because the second phase properties are very similar to the primary phase. These unique properties, in particular, low ,r and high Q×f, can be utilized as a very promising dielectric material for ultra-high-frequency applications. [source]


    Nitridation of Silica to an ,-Silicon Nitride Nanorod Using NaNH2 in the Autoclave at 700°C

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2007
    Lingling Zhu
    ,-silicon nitride nanorods have been synthesized through solid-state reduction,nitridation of silica using NaNH2 as both a reductant and a nitriding reagent. X-ray powder diffraction patterns show that the products have a hexagonal phase with lattice parameters a=7.767 Å and c=5.630 Å. Transmission electron microscopy reveals that the as-synthesized products are pure nanorods with an average size about 30 nm in diameter and 400 nm in length. X-ray photoelectron spectra indicate that the molar ratio of Si/N is 2.988:4. Fourier-transform infrared spectrum yields a strong Si,N absorption at 926 cm,1 that may be a red shift due to size effect. [source]


    Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    METEORITICS & PLANETARY SCIENCE, Issue 11 2009
    Sarah A. Huson
    Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite. [source]


    A new approach to calculating powder diffraction patterns based on the Debye scattering equation

    ACTA CRYSTALLOGRAPHICA SECTION A, Issue 1 2010
    Noel William Thomas
    A new method is defined for the calculation of X-ray and neutron powder diffraction patterns from the Debye scattering equation (DSE). Pairwise atomic interactions are split into two contributions, the first from lattice-pair vectors and the second from cell-pair vectors. Since the frequencies of lattice-pair vectors can be directly related to crystallite size, application of the DSE is thereby extended to crystallites of lengths up to ~200,nm. The input data correspond to unit-cell parameters, atomic coordinates and displacement factors. The calculated diffraction patterns are characterized by full backgrounds as well as complete reflection profiles. Four illustrative systems are considered: sodium chloride (NaCl), ,-quartz, monoclinic lead zirconate titanate (PZT) and kaolinite. The effects of varying crystallite size on diffraction patterns are calculated for NaCl, quartz and kaolinite, and a method of modelling static structural disorder is defined for kaolinite. The idea of partial diffraction patterns is introduced and a treatment of atomic displacement parameters is included. Although the method uses pair distribution functions as an intermediate stage, it is anticipated that further progress in reducing computational times will be made by proceeding directly from crystal structure to diffraction pattern. [source]


    Inverse bilayer structure of mononuclear CoII and NiII complexes of the type M(H2O)3(SO4)(4-CNpy)2

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 4 2009
    Birinchi K. Das
    Two new metal compounds of the formula [M(H2O)3(SO4)(4-CNpy)2]·H2O [M = Ni (1) and Co (2), 4-CNpy = 4-cyanopyridine] have been prepared and studied by X-ray diffraction. In both of these compounds the 4-CNpy ligands are coordinated via pyridyl-N atoms to the metal ions in a cis fashion. The neutral complexes along with the uncoordinated H2O molecules are glued together preferentially into inverse bilayers by non-covalent interactions, including unique interlayer ,,, interactions between antiparallel nitrile groups. Hartree,Fock and density-functional theory (DFT) calculations indicate that the ,,, interactions are energetically significant. The unit-cell similarity index (,) of 0.0046 for the compounds suggests their isostructurality, which is also supported by their X-ray powder diffraction patterns that can be almost superimposed. [source]


    X-ray powder diffraction and electron diffraction studies of the thortveitite-related L phase, (Zn,Mn)2V2O7

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2009
    Kevin M. Knowles
    The phase designated ,-Zn3(VO4)2 reported as a minor second phase in zinc oxide-based varistor materials doped with vanadium oxide and manganese oxide is shown to be the L phase, (Zn1,,,xMnx)2V2O7 (0.188 < x < 0.538), in the pseudo-binary Mn2V2O7,Zn2V2O7 system. Analysis of X-ray powder diffraction patterns and electron diffraction patterns of this phase shows that the previously published a, c and , values for this thortveitite-related phase are incorrect. Instead, Rietveld refinement of the X-ray powder pattern of the L phase shows that it has a monoclinic C lattice with Z = 6, with a = 10.3791,(1), b = 8.5557,(1), c = 9.3539,(1),Å and , = 98.467,(1)°. Although prior convergent-beam electron diffraction work of `,-Zn3(VO4)2' confirmed the C Bravais lattice, the space group was found to be Cm rather than C2/m, the difference perhaps arising from the inability of the X-rays to detect small displacements of oxygen. Attempts to refine the structure in Cm did not produce improved R factors. The relationship between the crystal structure of the L phase and the high-temperature C2/m,,-Zn2V2O7 thortveitite-type solid solution is discussed. [source]


    New Powder Diffraction File (PDF-4) in relational database format: advantages and data-mining capabilities

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3-1 2002
    Soorya N. Kabekkodu
    The International Centre for Diffraction Data (ICDD) is responding to the changing needs in powder diffraction and materials analysis by developing the Powder Diffraction File (PDF) in a very flexible relational database (RDB) format. The PDF now contains 136,895 powder diffraction patterns. In this paper, an attempt is made to give an overview of the PDF-4, search/match methods and the advantages of having the PDF-4 in RDB format. Some case studies have been carried out to search for crystallization trends, properties, frequencies of space groups and prototype structures. These studies give a good understanding of the basic structural aspects of classes of compounds present in the database. The present paper also reports data-mining techniques and demonstrates the power of a relational database over the traditional (flat-file) database structures. [source]