Potential Therapeutic Option (potential + therapeutic_option)

Distribution by Scientific Domains


Selected Abstracts


Intrathecal Ziconotide for Neuropathic Pain: A Review

PAIN PRACTICE, Issue 5 2009
Richard L. Rauck MD
Abstract Neuropathic pain is a considerable burden that affects activities of daily living. The management of neuropathic pain can be challenging because of multiple etiologies and complex manifestations. Ziconotide is a nonopioid intrathecal (IT) analgesic option for patients with neuropathic pain refractory to conventional treatments. The objective of this article is to review the published literature on ziconotide for the treatment of neuropathic pain. Relevant publications were identified through searches of all years of 6 databases, which included PubMed, EMBASE, and CINAHL. Search terms used were ziconotide, SNX-111, MVIIA, Prialt, and neuropathic pain. Publications were included if ziconotide was intrathecally administered (either alone or in combination with other IT agents) to treat neuropathic pain of any etiology and if pain assessment was an outcome measure. Data extracted included study design, IT drug doses, pain outcome measures, and adverse events (AEs). Twenty-eight articles met the inclusion criteria: 5 were preclinical studies and 23 were clinical studies. In the preclinical studies, ziconotide demonstrated antiallodynic effects on neuropathic pain. Data from double-blind, placebo-controlled (DBPC) trials indicated that patients with neuropathic pain reported a mean percent improvement in pain score with ziconotide monotherapy that ranged from 15.7% to 31.6%. A low starting dose and slow titration of ziconotide resulted in an improved safety profile in the aforementioned trials. Common AEs associated with ziconotide include nausea and/or vomiting, dizziness, confusion, urinary retention, and somnolence. Evidence from DBPC trials, open-label studies, case series, and case studies suggests that ziconotide, as either monotherapy or in combination with other IT drugs, is a potential therapeutic option for patients with refractory neuropathic pain. Additional studies are needed to establish the long-term efficacy and safety of ziconotide for neuropathic pain. [source]


Nuclear STK15 expression is associated with aggressive behaviour of oral carcinoma cells in vivo and in vitro,

THE JOURNAL OF PATHOLOGY, Issue 1 2010
Shou-Yen Kao
Abstract Oral squamous cell carcinoma (OSCC) is one of the most commonly diagnosed cancers worldwide. Chromosome 20q is a hotspot for gene amplification in OSCC and the serine/threonine kinase STK15 (also named Aurora-A) maps to 20q13. The amplification and over-expression of STK15 is common in neoplasia but the functional and clinical impact of STK15 in OSCC remains poorly understood. STK15 copy number is amplified in 12% of OSCCs and nuclear STK15 protein expression increases with tumour progression. In vivo elevated nuclear STK15 protein expression is significantly associated with the worse prognosis of OSCC patients. The combination of high nuclear STK15 and Ki-67 expression has a 2.55-fold hazard for cancer-associated mortality. In vitro knockdown of STK15 reduced the oncogenic phenotypes of OECM-1 cells. Injection of lentivirus carrying shRNA vectors against STK15 significantly reduced the growth of SAS xenografts on nude mice. Knockdown of STK15 also induced autophagy and apoptosis of OSCC cells. Our data provide evidence that STK15 is oncogenic for OSCC and that its nuclear expression is a predictor of clinical behaviour. Knockdown of STK15 could be a potential therapeutic option in OSCC and other tumours. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Behavior of Cardiomyocytes and Skeletal Muscle Cells on Different Extracellular Matrix Components,Relevance for Cardiac Tissue Engineering

ARTIFICIAL ORGANS, Issue 1 2007
Karin Macfelda
Abstract:, Myocardial cell transplantation in patients with heart failure is emerging as a potential therapeutic option to augment the function of remaining myocytes. Nevertheless, further investigations on basic issues such as ideal cell type continue to be evaluated. Therefore, the aim of our studies was to compare the performance of skeletal muscle cells and cardiomyocytes with respect to their proliferation rate and viability on different extracellular matrix components (EMCs). Rat cardiomyocytes (RCM) and rat skeletal muscle cells (RSMC) were cultured on EMCs such as collagen type I, type IV, laminin, and fibronectin. The components were used as "single coating" as well as "double coating." Proliferation rates were determined by proliferation assays on days 1, 2, 4, and 8 after inoculation of the cells. The most essential result is that collagen type I enhances the proliferation rate of RSMC but decreases the proliferation of RCM significantly. This effect is independent of the second EMC used for the double-coating studies. Other EMCs also influence cellular behavior, whereas the sequence of the EMCs is essential. Results obtained in our studies reveal the significant different proliferation behavior of RCM and RSMC under identical conditions. As skeletal muscle cells are also used in heart tissue engineering models, these results are essential and should be investigated in further studies to prove the applicability of skeletal muscle cells for heart tissue engineering purposes. [source]


Pirfenidone: a potential therapeutic option in the treatment of liver fibrosis

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2009
Fabio Grizzi
No abstract is available for this article. [source]


S-adenosylhomocysteine sensitizes to TNF-, hepatotoxicity in mice and liver cells: A possible etiological factor in alcoholic liver disease

HEPATOLOGY, Issue 4 2004
Zhenyuan Song
In alcoholic liver disease, tumor necrosis factor-, (TNF,) is a critical effector molecule, and abnormal methionine metabolism is a fundamental acquired metabolic abnormality. Although hepatocytes are resistant to TNF,-induced killing under normal circumstances, previous studies have shown that primary hepatocytes from rats chronically fed alcohol have increased TNF, cytotoxicity. Therefore, there must be mechanisms by which chronic alcohol exposure "sensitizes" to TNF, hepatotoxicity. S-adenosylhomocysteine (SAH) is product of methionine in transsulfuration pathway and a potent competitive inhibitor of most methyltransferases. In this study, we investigated the effects of increased SAH levels on TNF, hepatotoxicity. Our results demonstrated that chronic alcohol consumption in mice not only decreased hepatic S-adenosylmethionine levels but also increased hepatic SAH levels, which resulted in a significantly decreased S-adenosylmethionine-to-SAH ratio. This was associated with significant increases in hepatic TNF, levels, caspase-8 activity, and cell death. In vitro studies demonstrated that SAH-enhancing agents sensitized hepatocytes to TNF, killing, and the death was associated with increased caspase-8 activity, which was blocked by a caspase-8 inhibitor. In addition, increased intracellular SAH levels had no effect on nuclear factor ,B activity induced by TNF,. In conclusion, these results provide a new link between abnormal methionine metabolism and abnormal TNF, metabolism in alcoholic liver disease. Increased SAH is a potent and clinically relevant sensitizer to TNF, hepatotoxicity. These data further support improving the S-adenosylmethionine-to-SAH ratio and removal of intracellular SAH as potential therapeutic options in alcoholic liver disease. Supplementary material for this article can be found on the HEPATOLOGYwebsite (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY 2004;40:989,997.) [source]


Promising tumor-associated antigens for future prostate cancer therapy

MEDICINAL RESEARCH REVIEWS, Issue 1 2010
Yong Li
Abstract Prostate cancer (CaP) is one of the most prevalent malignant diseases among men in Western countries. There is currently no cure for metastatic castrate-resistant CaP, and median survival for these patients is about 18 months; the high mortality rate seen is associated with widespread metastases. Progression of CaP from primary to metastatic disease is associated with several molecular and genetic changes that can affect the expression of specific tumor-associated antigens (TAAs) or receptors on the cell surface. Targeting TAAs is emerging as an area of promise for controlling late-stage and recurrent CaP. Several reviews have summarized the progress made in targeting signaling pathways for CaP but will not be discussed here. We describe some important CaP TAAs. These include prostate stem-cell antigen, prostate-specific membrane antigen, MUC1, epidermal growth factor receptor, platelet-derived growth factor and its receptor, urokinase plasminogen activator and its receptor, and extracellular matrix metalloproteinase inducer. We summarize recent advancements in our understanding of their role in CaP metastasis, as well as potential therapeutic options for targeting CaP TAAs. We also discuss the origin, identification, and characterization of prostate cancer stem cells (CSCs) and the potential benefits of targeting prostate CSCs to overcome chemoresistance and CaP recurrence. © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 1, 67,101, 2010 [source]


CONTINUOUS FLUOXETINE ADMINISTRATION PREVENTS RECURRENCE OF PULMONARY ARTERIAL HYPERTENSION AND PROLONGS SURVIVAL IN RATS

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2009
Shao-Ping Zhu
SUMMARY 1The serotonin transporter (SERT) is strongly implicated in the pathogenesis of pulmonary arterial hypertension (PAH) in patients and animal models. Inhibitors of SERT have been reported to attenuate or reverse experimental PAH, which makes them potential therapeutic options for the treatment of PAH in humans. However, little is known about pathophysiological features after reversal or attenuation of PAH; moreover, the long-term therapeutic effects of SERT inhibitors on PAH remain undetermined. Thus, the aim of the present study was to investigate the short- and long-term effects of fluoxetine on monocrotaline (MCT)-induced PAH and associated pathophysiological changes in PAH models. 2Rats were randomly divided into four groups as follows: (i) an M + F group, in which rats received a single injection of MCT (60 mg/kg, s.c.) and then after 3 weeks were given fluoxetine (10 mg/kg) once daily by gavage from Week 4 to Week 12; (ii) an M/F group, in which 3 weeks after a single MCT (60 mg/kg, s.c.) injection, rats were given fluoxetine (10 mg/kg) by daily gavage from Week 4 to Week 6 and were then given an equivalent volume of saline once daily by gavage from Week 7 to Week 12; (iii) an MCT group, in which 3 weeks after a single MCT (60 mg/kg, s.c.) injection rats were given an equivalent volume of saline by gavage from Week 4 to Week 12; and (iv) a saline group, in which rats received an equivalent volume of saline injection or gavage over the 12 week treatment period. Morphometric changes, pulmonary arterial pressure, percentage wall thickness, right ventricular hypertrophy index and SERT expression were detected at various times during the 12 week treatment period. Survival analysis was performed in each group. 3After 12 weeks treatment, it was found that even through fluoxetine treatment resulted in complete reversal of PAH, PAH recurred after fluoxetine withdrawal. In contrast, continuous administration of fluoxetine prevented the recurrence of PAH and prolonged survival. Analysis of SERT protein levels in rat lung indicated that, compared with values obtained at Week 0, SERT protein increased significantly after discontinuation of fluoxetine but continuous fluoxetine administration inhibited this increase. 4In conclusion, SERT overexpression correlates with the recurrence of PAH after withdrawal of fluoxetine in rats. Continuous fluoxetine administration prevents recurrence of PAH and prolongs survival. [source]