Potential Shortcomings (potential + shortcoming)

Distribution by Scientific Domains


Selected Abstracts


Benzodiazepines in epilepsy: pharmacology and pharmacokinetics

ACTA NEUROLOGICA SCANDINAVICA, Issue 2 2008
J. Riss
Benzodiazepines (BZDs) remain important agents in the management of epilepsy. They are drugs of first choice for status epilepticus and seizures associated with post-anoxic insult and are also frequently used in the treatment of febrile, acute repetitive and alcohol withdrawal seizures. Clinical advantages of these drugs include rapid onset of action, high efficacy rates and minimal toxicity. Benzodiazepines are used in a variety of clinical situations because they have a broad spectrum of clinical activity and can be administered via several routes. Potential shortcomings of BZDs include tolerance, withdrawal symptoms, adverse events, such as cognitive impairment and sedation, and drug interactions. Benzodiazepines differ in their pharmacologic effects and pharmacokinetic profiles, which dictate how the drugs are used. Among the approximately 35 BZDs available, a select few are used for the management of seizures and epilepsy: clobazam, clonazepam, clorazepate, diazepam, lorazepam and midazolam. Among these BZDs, clorazepate has a unique profile that includes a long half-life of its active metabolite and slow onset of tolerance. Additionally, the pharmacokinetic characteristics of clorazepate (particularly the sustained-release formulation) could theoretically help minimize adverse events. However, larger, controlled studies of clorazepate are needed to further examine its role in the treatment of patients with epilepsy. [source]


Issues, progress and new results in robust adaptive control,

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 10 2006
Sajjad Fekri
Abstract We overview recent progress in the field of robust adaptive control with special emphasis on methodologies that use multiple-model architectures. We argue that the selection of the number of models, estimators and compensators in such architectures must be based on a precise definition of the robust performance requirements. We illustrate some of the concepts and outstanding issues by presenting a new methodology that blends robust non-adaptive mixed µ-synthesis designs and stochastic hypothesis-testing concepts leading to the so-called robust multiple model adaptive control (RMMAC) architecture. A numerical example is used to illustrate the RMMAC design methodology, as well as its strengths and potential shortcomings. The later motivated us to develop a variant architecture, denoted as RMMAC/XI, that can be effectively used in highly uncertain exogenous plant disturbance environments. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Problems in evaluating regional and local trends in temperature: an example from eastern Colorado, USA

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2002
R. A. Pielke SR
Abstract We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations; or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures , , 17.8 °C (,0 °F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ,32.2 °C (,90 °F) or days ,37.8 °C (,100 °F). There was evidence of a sub-regional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate change from coarse-scale general circulation models will accurately portray trends at sub-regional scales. However, the assessment of a group of stations for consistent more qualitative trends (such as the number of days less than ,17.8 °C, such as we found) provides a reasonably robust procedure to evaluate climate trends and variability. Copyright © 2002 Royal Meteorological Society [source]


Design and statistical analysis of oral medicine studies: common pitfalls

ORAL DISEASES, Issue 3 2010
L Baccaglini
Oral Diseases (2010) 16, 233,241 A growing number of articles are emerging in the medical and statistics literature that describe epidemiologic and statistical flaws of research studies. Many examples of these deficiencies are encountered in the oral, craniofacial, and dental literature. However, only a handful of methodologic articles have been published in the oral literature warning investigators of potential errors that may arise early in the study and that can irreparably bias the final results. In this study, we briefly review some of the most common pitfalls that our team of epidemiologists and statisticians has identified during the review of submitted or published manuscripts and research grant applications. We use practical examples from the oral medicine and dental literature to illustrate potential shortcomings in the design and analysis of research studies, and how these deficiencies may affect the results and their interpretation. A good study design is essential, because errors in the analysis can be corrected if the design was sound, but flaws in study design can lead to data that are not salvageable. We recommend consultation with an epidemiologist or a statistician during the planning phase of a research study to optimize study efficiency, minimize potential sources of bias, and document the analytic plan. [source]