Home About us Contact | |||
Potential Impurities (potential + impurity)
Selected AbstractsCE assay for simultaneous determination of charged and neutral impurities in dexamphetamine sulfate using a dual CD systemELECTROPHORESIS, Issue 9 2010Sudaporn Wongwan Abstract A CE assay for the simultaneous determination of charged and uncharged potential impurities (1S,2S -(+)-norpseudoephedrine, 1R,2S -(,)-norephedrine, phenylacetone and phenylacetone oxime) of dexamphetamine sulfate including the stereoisomer levoamphetamine was developed and validated. The optimized background electrolyte consisted of a 50,mM sodium phosphate buffer, pH 3.0, containing 80,mg/mL sulfobutylether-,-CD and 25,mg/mL sulfated ,-CD. Separations were performed in 40.2/35,cm, 50 ,m id fused-silica capillaries at a temperature of 20°C and an applied voltage of ,10,kV. 1R,2S -(,)-ephedrine was used as internal standard. The assay was validated in the range of 0.05,1.0% for the related substances and in the range of 0.05,5.0% for levoamphetamine. The LOD was 0.01,0.02% depending on the analyte. The assay also allowed the separation of the E,Z-stereoisomers of phenylacetone oxime. The effect of the degree of substitution of sulfobutylether-,-CD was investigated. In commercial samples of dexamphetamine sulfate between 3.2 and 3.7% of levoamphetamine were found. Furthermore, phenylacetone and phenylacetone oxime could be observed at the LOD, indicating the synthetic origin of the investigated samples. [source] Method development and validation for the analysis of didanosine using micellar electrokinetic capillary chromatographyELECTROPHORESIS, Issue 21 2005Swapna Mallampati Abstract A selective MEKC method was developed for the analysis of didanosine in bulk samples. Successful separation of didanosine from 13 of its potential impurities, derived from the various synthetic preparation procedures, was achieved. As CZE gave poor separation selectivity, MEKC was preferable. The use of EKC allowed achievement of the separation in a significantly shorter time than conventional HPLC. An anionic long-chain surfactant, lithium dodecyl sulfate (LiDS), was used as the pseudostationary phase and sodium tetraborate buffer as the aqueous phase. In order to obtain the optimal conditions and to test the method robustness, a central composite response surface modeling experiment was performed. The optimized electrophoretic conditions include the use of an uncoated fused-silica capillary with a total length of 40,cm and an ID of 50,,m, a BGE containing 40,mM sodium tetraborate and 110,mM LiDS at pH,8.0, an applied voltage of 18.0,kV, and the capillary temperature maintained at 15°C. The method was found to be robust. The parameters for validation such as linearity, precision, and sensitivity are also reported. Three commercial bulk samples were analyzed with this system. [source] Determination of the chiral and achiral related substances of methotrexate by cyclodextrin-modified micellar electrokinetic chromatographyELECTROPHORESIS, Issue 16 2004Roberto Gotti Abstract A cyclodextrin-modified micellar electrokinetic chromatographic (CD-MEKC) method for the determination of the most important potential impurities of methotrexate (MTX): 2,4-diamino-6-(hydroxymethyl)pteridine, aminopterine hydrate, 4-[N -(2-amino-4-hydroxy-6-pteridinylmethyl)- N -methylamino] benzoic acid, 4-[N -(2,4-diamino-6-pteridinylmethyl)- N -methylamino] benzoic acid, and the distomer D -MTX is presented. The MEKC separation of these compounds was optimized by applying a step-by-step approach. The addition of ,-CD to a conventional MEKC system, based on sodium dodecyl sulfate (SDS) as surfactant, showed to be essential for the enantioresolution of racemic MTX as well as for the separation of the achiral impurities. To achieve high-resolution factor between the peaks adjacent to the main component (L -MTX), as required in the analysis of related impurities, the separation conditions were stressed; in particular, the addition of methanol to the CD-MEKC system resulted in a very effective choice. Under the optimized final conditions (100 mM SDS and 45 mM ,-CD in a mixture of 50 mM borate buffer, pH 9.30-methanol (75:25 v/v)), the method was validated showing a general adequate accuracy (93,106% recovery) in the determination of L -MTX related substances at the impurity level of 0.12% w/w with a relative standard deviation (RSD)% lower than 8% (n = 4). The method was successfully applied to the analysis of pharmaceuticals (tablets and injections) which showed to contain the distomer D -MTX as major impurity and aminopterine hydrate as a further related substance in the commercial tablets. [source] Peak shape improvement of basic analytes in capillary liquid chromatographyJOURNAL OF SEPARATION SCIENCE, JSS, Issue 3 2005Anja Prüß Abstract The analysis of bases is of special interest in pharmaceutical research because numerous active substances contain basic functional groups. Capillary and conventional size LC separations of drug substances spiked with potential impurities were compared. In the case of the nonpolar drug levonorgestrel equal separation efficiency was readily attained by both techniques. The peaks of basic substances, however, showed extensive tailing when separated by capillary LC. The peak deformation was attributable to interactions of the basic substances with the polar inner surface of the fused silica capillaries employed in capillary LC and does not appear with the steel tubing generally used in conventional size LC. This drawback of capillary LC was overcome by use of deactivated fused silica capillaries for column hardware and transfer lines. [source] Drug impurity profiling by capillary electrophoresis/mass spectrometry using various ionization techniquesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2009Paul Hommerson Capillary electrophoresis/mass spectrometry (CE/MS) is predominantly carried out using electrospray ionization (ESI). Recently, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have become available for CE/MS. With the VUV lamp turned off, the APPI source may also be used for CE/MS by thermospray ionization (TSI). In the present study the suitability of ESI, APCI, APPI and TSI for drug impurity profiling by CE/MS in the positive ion mode is evaluated. The drugs carbachol, lidocaine and proguanil and their potential impurities were used as test compounds, representing different molecular polarities. A background electrolyte of 100,mM acetic acid (pH 4.5) provided baseline separation of nearly all impurities from the respective drugs. APPI yielded both even- and odd-electron ions, whereas the other ionization techniques produced even-electron ions only. In-source fragmentation was more pronounced with APCI and APPI than with ESI and TSI, which was most obvious for proguanil and its impurities. In general, ESI and TSI appeared the most efficient ionization techniques for impurities that are charged in solution achieving detection limits of 100,ng/mL (full-scan mode). APPI and APCI showed a lower efficiency, but allowed ionization of low and high polarity analytes, although quaternary ammonium compounds (e.g. carbachol) could not be detected. Largely neutral compounds, such as the lidocaine impurity 2,6-dimethylaniline, could not be detected by TSI, and yielded similar detection limits (500,ng/mL) for ESI, APPI and APCI. In many cases, impurity detection at the 0.1% (w/w) level was possible when 1,mg/mL of parent drug was injected with at least one of the CE/MS systems. Overall, the tested CE/MS systems provide complementary information as illustrated by the detection and identification of an unknown impurity in carbachol. Copyright © 2009 John Wiley & Sons, Ltd. [source] An electrospray mass spectrometric method for accurate mass determination of highly acid-sensitive phosphoramiditesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 4 2008Zoltán Kupihár An accurate mass determination method utilizing electrospray ionization mass spectrometry is described for analysis of several different types of phosphoramidites that are extremely acid-sensitive compounds. An earlier method, which applied a LiCl/acetonitrile system, was extended for this special application by using polymeric standards including poly(ethylene glycol) (PEG), poly(ethylene glycol) dimethyl ether (PDE) and poly(propylene glycol) (PPG). Concentrations of standards, samples and LiCl were optimized and potential impurities that affect the analyses were also investigated. Copyright © 2008 John Wiley & Sons, Ltd. [source] |