Potential Evapotranspiration (potential + evapotranspiration)

Distribution by Scientific Domains


Selected Abstracts


Comparison of soil moisture and meteorological controls on pine and spruce transpiration

ECOHYDROLOGY, Issue 3 2008
Eric E. Small
Abstract Transpiration is an important component of the water balance in the high elevation headwaters of semi-arid drainage basins. We compare the importance of soil moisture and meteorological controls on transpiration and quantify how these controls are different at a ponderosa pine site and a spruce site in the Jemez river drainage basin of northern New Mexico, a sub-basin of the Rio Grande. If only soil moisture controls fluctuations in transpiration, then simple hydrologic models focussed only on soil moisture limitations are reasonable for water balance studies. If meteorological controls are also critical, then more complex models are required. We measured volumetric water content in the soil and sap velocity, and assumed that transpiration is proportional to sap velocity. Ponderosa sap velocity varies with root zone soil moisture. Nearly all of the scatter in the ponderosa sap velocity,soil moisture relationship can be predicted using a simple model of potential evapotranspiration (ET), which depends only on measured incident radiation and air temperature. Therefore, simple hydrologic models of ponderosa pine transpiration are warranted. In contrast, spruce sap velocity does not clearly covary with soil moisture. Including variations in potential evapotranspiration does not clarify the relationship between sap velocity and soil moisture. Likewise, variations in radiation, air temperature, and vapour pressure do not explain the observed fluctuations in sap velocity, at least according to the standard models and parameters for meteorological restrictions on transpiration. Both the simple and more complex models commonly used to predict transpiration are not adequate to model the water balance in the spruce forest studied here. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L.

GLOBAL CHANGE BIOLOGY, Issue 3 2010
DANIELLE A. WAY
Abstract For herbaceous species, elevated CO2 often increases seed production but usually leads to decreased seed quality. However, the effects of increased atmospheric CO2 on tree fecundity remain uncertain, despite the importance of reproduction to the composition of future forests. We determined how seed quantity and quality differed for pine trees grown for 12 years in ambient and elevated (ambient+200 ,L L,1) CO2, at the Duke Forest free-air CO2 enrichment (FACE) site. We also compared annual reproductive effort with yearly measurements of aboveground net primary productivity (ANPP), precipitation (P), potential evapotranspiration (PET) and water availability [precipitation minus potential evapotranspiration (P,PET)] to investigate factors that may drive interannual variation in seed production. The number of mature, viable seeds doubled per unit basal area in high-CO2 plots from 1997 to 2008 (P<0.001), but there was no CO2 effect on mean seed mass, viability, or nutrient content. Interannual variation in seed production was positively related to ANPP, with a similar percentage of ANPP diverted to reproduction across years. Seed production was negatively related to PET (P<0.005) and positively correlated with water availability (P<0.05), but showed no relationship with precipitation (P=0.88). This study adds to the few findings that, unlike herbaceous crops, woody plants may benefit from future atmospheric CO2 by producing larger numbers of seeds without suffering degraded seed quality. Differential reproductive responses between functional groups and species could facilitate woody invasions or lead to changes in forest community composition as CO2 rises. [source]


Crop planting dates: an analysis of global patterns

GLOBAL ECOLOGY, Issue 5 2010
William J. Sacks
ABSTRACT Aim, To assemble a data set of global crop planting and harvesting dates for 19 major crops, explore spatial relationships between planting date and climate for two of them, and compare our analysis with a review of the literature on factors that drive decisions on planting dates. Location, Global. Methods, We digitized and georeferenced existing data on crop planting and harvesting dates from six sources. We then examined relationships between planting dates and temperature, precipitation and potential evapotranspiration using 30-year average climatologies from the Climatic Research Unit, University of East Anglia (CRU CL 2.0). Results, We present global planting date patterns for maize, spring wheat and winter wheat (our full, publicly available data set contains planting and harvesting dates for 19 major crops). Maize planting in the northern mid-latitudes generally occurs in April and May. Daily average air temperatures are usually c. 12,17 °C at the time of maize planting in these regions, although soil moisture often determines planting date more directly than does temperature. Maize planting dates vary more widely in tropical regions. Spring wheat is usually planted at cooler temperatures than maize, between c. 8 and 14 °C in temperate regions. Winter wheat is generally planted in September and October in the northern mid-latitudes. Main conclusions, In temperate regions, spatial patterns of maize and spring wheat planting dates can be predicted reasonably well by assuming a fixed temperature at planting. However, planting dates in lower latitudes and planting dates of winter wheat are more difficult to predict from climate alone. In part this is because planting dates may be chosen to ensure a favourable climate during a critical growth stage, such as flowering, rather than to ensure an optimal climate early in the crop's growth. The lack of predictability is also due to the pervasive influence of technological and socio-economic factors on planting dates. [source]


Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures.

GRASS & FORAGE SCIENCE, Issue 2 2006

Abstract To investigate seasonal and annual interactions between management and grassland dynamics, a simple mechanistic model of the dynamics of production, structure and digestibility in permanent pastures was constructed. The model is designed to respond to various defoliation regimes, perform multiple-year simulations and produce simple outputs that are easy to use as inputs for a model of ruminant livestock production. Grassland communities are described using a set of average functional traits of their constituent grass groups. The sward is subdivided into four structural compartments: green leaves and sheath, dead leaves and sheath, green stems and flowers, and dead stems and flowers. Each compartment is characterized by its biomass, age and digestibility. Only above-ground growth is modelled, using a light-utilization efficiency approach modulated by a seasonal pattern of storage and mobilization of reserves. Ageing of plant parts is driven by cumulative thermal time from 1 January and by biomass flows. Age affects senescence, abscission and digestibility of green compartments and, therefore, the quality of green leaves and stems can increase or decrease over time in relation to net growth and defoliation dynamics. The functional traits having the greatest impact on model outputs are seasonal effects, period of reproductive growth and effects of temperature on photosynthetic efficiency. The functional traits of the grass groups were parameterized for temperate pastures of the Auvergne region in France. The other model inputs are few: proportion of functional groups, basic weather data (incident photosynthetically active radiation, mean daily temperature, precipitation and potential evapotranspiration) and site characteristics (nitrogen nutrition index, soil water-holding capacity). In the context of a whole-farm simulator, the model can be applied at a field scale. [source]


Study of indices for drought characterization in KBK districts in Orissa (India)

HYDROLOGICAL PROCESSES, Issue 12 2008
R. P. Pandey
Abstract Drought is a temporary, random and regional climatic phenomenon, originating due to lack of precipitation leading to water deficit and causing economic loss. Success in drought alleviation depends on how well droughts are defined and their severity quantified. A quantitative definition identifies the beginning, end, spatial extent and the severity of drought. Among the available indices, no single index is capable of fully describing all the physical characteristics of drought. Therefore, in most cases it is useful and necessary to consider several indices, examine their sensitivity and accuracy, and investigate for correlation among them. In this study, the geographical information system-based Spatial and Time Series Information Modeling (SPATSIM) and Daily Water Resources Assessment Modeling (DWRAM) software were used for drought analysis on monthly and daily bases respectively and its spatial distribution in both dry and wet years. SPATSIM utilizes standardized precipitation index (SPI), effective drought index (EDI), deciles index and departure from long-term mean and median; and DWRAM employs only EDI. The analysis of data from the Kalahandi and Nuapada districts of Orissa (India) revealed that (a) droughts in this region occurred with a frequency of once in every 3 to 4 years, (b) droughts occurred in the year when the ratio of annual rainfall to potential evapotranspiration (Pae/PET) was less than 0·6, (c) EDI better represented the droughts in the area than any other index; (d) all SPI, EDI and annual deviation from the mean showed a similar trend of drought severity. The comparison of all indices and results of analysis led to several useful and pragmatic inferences in understanding the drought attributes of the study area. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Wetlands with controlled drainage and sub-irrigation systems,modelling of the water balance

HYDROLOGICAL PROCESSES, Issue 14 2007
Ottfried Dietrich
Abstract Over the past centuries, the agricultural use of wetlands in Central Europe has required interference with the natural wetland water balance. Often this has consisted of drainage measures alone. In low-precipitation areas, it has also involved the operation of combined drainage and sub-irrigation systems. Model studies conducted as part of planning processes, or with a view to finding out the impact of changing climate conditions on the water balance of wetlands, must take these facts into account. For this reason, a water balance model has been devised for wetlands whose water balance is governed by water resources management systems. It is based on the WBalMo model system. Special modules were integrated into WBalMo to calculate the water balance of wetland areas (WABI module) and to regulate inflow partitioning within the wetland (REGINF module). When calculating the water balance, the WABI module takes into account precipitation and potential evapotranspiration, groundwater levels below surface, soil types, land-use classes, inflows via the running water system, and data for target water levels. It provides actual evapotranspiration, discharge into the running water system, and groundwater levels in the area. The example of the Spreewald, a major wetland area in north-eastern Germany, was used to design and test the WBalMo Spreewald model. The comparison of measured and calculated water balance parameters of the wetland area confirms the suitability of the model for water balance studies in wetlands with complex water resources management systems. The results reveal the strong influence of water management on the water balance of such areas. The model system has proved to be excellently suited for planning and carrying out water management measures aimed at the sustainable development of wetlands. Furthermore, scenario analyses can be used to assess the impact of global change on the water balance of wetlands. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany

HYDROLOGICAL PROCESSES, Issue 18 2005
C.-Y. Xu
Abstract This study evaluates seven evapotranspiration models and their performance in water balance studies by using lysimeter measurement data at the Mönchengladbach hydrological and meteorological station in Germany. Of the seven evapotranspiration models evaluated, three models calculate actual evapotranspiration directly using the complementary relationship approach, i.e. the CRAE model of Morton, the advection,aridity (AA) model of Brutsaert and Stricker, and the GG model of Granger and Gray, and four models calculate first potential evapotranspiration and then actual evapotranspiration by considering the soil moisture condition. Two of the four potential evapotranspiration models belong to the temperature-based category, i.e. the Thornthwaite model and the Hargreaves model, and the other two belong to the radiation-based category, i.e. the Makkink model and the Priestley,Taylor model. The evapotranspiration calculated by the above seven models, together with precipitation, is used in the water balance model to calculate other water balance components. The results show that, for the calculation of actual evapotranspiration, the GG model and the Makkink model performed better than the other models; for the calculation of groundwater recharge using the water balance approach, the GG model and the AA models performed better; for the simulation of soil moisture content using the water balance approach, four models (GG, Thornthwaite, Makkink and Priestley,Taylor) out of the seven give equally good results. It can be concluded that the lysimeter-measured water balance components, i.e. actual evapotranspiration, groundwater recharge, soil moisture, etc., can be predicted by the GG model and the Makkink model with good accuracy. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Hydrological regime analysis of the Selenge River basin, Mongolia

HYDROLOGICAL PROCESSES, Issue 14 2003
X. Ma
Abstract Arid and semi-arid regions are very vulnerable to environmental changes. Climate change studies indicate that the environment in such areas will steadily deteriorate with global warming; inland lakes will shrink and desert areas will expand. Mongolia is a landlocked country in north-central Asia that contains a unique ecological system consisting of taiga, steppe, and desert from north to south. The Selenge River basin (280 000 km2) in northern Mongolia is a semi-arid region underlain by permafrost, between latitudes 46 and 52°N, and longitudes 96 and 109°E. The issue of sustainable development of the basin is very important owing to its limited natural resources, including fresh water, forest, and rangeland. To examine the water cycle processes in the basin, a hydrological analysis was carried out using a simple scheme for the interaction between the land surface and atmosphere (big-leaf model) coupled to a hydrological model for the period 1988,92 to estimate the hydrological regime of the basin. Annual precipitation in this period averaged 298 mm, ranging from 212 to 352 mm at a 1 ° × 1 ° resolution based on data from 10 gauges, and the estimated annual evapotranspiration averaged 241 mm, ranging between 153 and 300 mm. This indicates that evapotranspiration accounts for the overwhelming majority of the annual precipitation, averaging 81% and ranging between 64 and 96%. The annual potential evapotranspiration in the basin averaged 2009 mm; the ratio of evapotranspiration (actual to potential evapotranspiration) was 0·12 and the wetness index (annual precipitation to potential evapotranspiration) was 0·15. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Reconstruction of a 1436-year soil moisture and vegetation water use history based on tree-ring widths from Qilian junipers in northeastern Qaidam Basin, northwestern China

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2008
Zhi-Yong Yin
Abstract Tree-ring widths have been used widely in studies of environmental changes and reconstructions of past climate. Eleven tree-ring chronologies of approximately 800,1500 years long were developed from Qilian junipers (Sabina przewalskii Kom.) for northeastern Qaidam Basin, along the margin of the Qinghai,Tibetan Plateau. Previous studies have revealed that water usage stress is the most limiting factor for tree growth in the study region. To evaluate the impact of the combined effects of temperature and precipitation changes over time, we performed water balance modelling using 1955,2002 meteorological data. We found that the tree-ring widths were strongly correlated with variables representing soil moisture conditions obtained from the water balance model. Specifically we considered actual evapotranspiration (AE) to represent the combined effect of water use demand and moisture availability, deficit as the difference between potential evapotranspiration (PE) and AE to represent the severity of water use stress, and relative soil moisture as the measure of moisture availability. For certain individual monthly and seasonal combinations, the tree-ring chronologies explained up to 80% of the variation in the soil moisture variables in regression analysis, indicating very good potential for reconstruction of regional soil moisture conditions in the past. These soil moisture variables outperformed precipitation and Palmer's drought severity index in most cases. We reconstructed the soil moisture conditions from 566 AD to 2001, which revealed major dry and wet periods and a general trend toward a wetter condition during the most recent 300 years. By comparing with other proxies in the region, we concluded that the moisture conditions reconstructed from tree-ring widths very well reflected the climate variability at the interannual and interdecadal scales. Copyright © 2007 Royal Meteorological Society [source]


Patterns of woody plant species richness in the Iberian Peninsula: environmental range and spatial scale

JOURNAL OF BIOGEOGRAPHY, Issue 10 2008
Ole R. Vetaas
Abstract Aim, Climate-based models often explain most of the variation in species richness along broad-scale geographical gradients. We aim to: (1) test predictions of woody plant species richness on a regional spatial extent deduced from macro-scale models based on water,energy dynamics; (2) test if the length of the climate gradients will determine whether the relationship with woody species richness is monotonic or unimodal; and (3) evaluate the explanatory power of a previously proposed ,water,energy' model and regional models at two grain sizes. Location, The Iberian Peninsula. Methods, We estimated woody plant species richness on grid maps with c. 2500 and 22,500 km2 cell size, using geocoded data for the individual species. Generalized additive models were used to explore the relationships between richness and climatic, topographical and substrate variables. Ordinary least squares regression was used to compare regional and more general water,energy models in relation to grain size. Variation partitioning by partial regression was applied to find how much of the variation in richness was related to spatial variables, explanatory variables and the overlap between these two. Results, Water,energy dynamics generate important underlying gradients that determine the woody species richness even over a short spatial extent. The relationships between richness and the energy variables were linear to curvilinear, whereas those with precipitation were nonlinear and non-monotonic. Only a small fraction of the spatially structured variation in woody species richness cannot be accounted for by the fitted variables related to climate, substrate and topography. The regional models accounted for higher variation in species richness than the water,energy models, although the water,energy model including topography performed well at the larger grain size. Elevation range was the most important predictor at all scales, probably because it corrects for ,climatic error' due to the unrealistic assumption that mean climate values are evenly distributed in the large grid cells. Minimum monthly potential evapotranspiration was the best climatic predictor at the larger grain size, but actual evapotranspiration was best at the smaller grain size. Energy variables were more important than precipitation individually. Precipitation was not a significant variable at the larger grain size when examined on its own, but was highly significant when an interaction term between itself and substrate was included in the model. Main conclusions, The significance of range in elevation is probably because it corresponds to several aspects that may influence species diversity, such as climatic variability within grid cells, enhanced surface area, and location for refugia. The relative explanatory power of energy and water variables was high, and was influenced by the length of the climate gradient, substrate and grain size of the analysis. Energy appeared to have more influence than precipitation, but water availability is also determined by energy, substrate and topographic relief. [source]


Environmental determinants of vascular plant species richness in the Austrian Alps

JOURNAL OF BIOGEOGRAPHY, Issue 7 2005
Dietmar Moser
Abstract Aim, To test predictions of different large-scale biodiversity hypotheses by analysing species richness patterns of vascular plants in the Austrian Alps. Location, The Austrian part of the Alps (c. 53,500 km2). Methods, Within the floristic inventory of Central Europe the Austrian part of the Alps were systematically mapped for vascular plants. Data collection was based on a rectangular grid of 5 × 3 arc minutes (34,35 km2). Emerging species richness patterns were correlated with several environmental factors using generalized linear models. Primary environmental variables like temperature, precipitation and evapotranspiration were used to test climate-related hypotheses of species richness. Additionally, spatial and temporal variations in climatic conditions were considered. Bedrock geology, particularly the amount of calcareous substrates, the proximity to rivers and lakes and secondary variables like topographic, edaphic and land-use heterogeneity were used as additional predictors. Model results were evaluated by correlating modelled and observed species numbers. Results, Our final multiple regression model explains c. 50% of the variance in species richness patterns. Model evaluation results in a correlation coefficient of 0.64 between modelled and observed species numbers in an independent test data set. Climatic variables like temperature and potential evapotranspiration (PET) proved to be by far the most important predictors. In general, variables indicating climatic favourableness like the maxima of temperature and PET performed better than those indicating stress, like the respective minima. Bedrock mineralogy, especially the amount of calcareous substrate, had some additional explanatory power but was less influential than suggested by comparable studies. The amount of precipitation does not have any effect on species richness regionally. Among the descriptors of heterogeneity, edaphic and land-use heterogeneity are more closely correlated with species numbers than topographic heterogeneity. Main conclusions, The results support energy-driven processes as primary determinants of vascular plant species richness in temperate mountains. Stressful conditions obviously decrease species numbers, but presence of favourable habitats has higher predictive power in the context of species richness modelling. The importance of precipitation for driving global species diversity patterns is not necessarily reflected regionally. Annual range of temperature, an indicator of short-term climatic stability, proved to be of minor importance for the determination of regional species richness patterns. In general, our study suggests environmental heterogeneity to be of rather low predictive value for species richness patterns regionally. However, it may gain importance at more local scales. [source]


Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients

JOURNAL OF BIOGEOGRAPHY, Issue 6 2000
Catherine Badgley
Abstract Aim, To evaluate the relationship of climate and physiography to species density and ecological diversity of North American mammals. Location, North America, including Mexico and Central America. Methods, Species density, size structure and trophic structure of mammalian faunas and nine environmental variables were documented for quadrats covering the entire continent. Spatial autocorrelation of species density and the environmental variables illustrated differences in their spatial structure at the continental scale. We used principal component analysis to reduce the dimensionality of the climatic variables, linear multiple regression to determine which environmental variables best predict species density for the continent and several regions of the continent, and canonical ordination to evaluate how well the environmental variables predict ecological structure of mammalian faunas over North America. Results, In the best regression model, five environmental variables, representing seasonal extremes of temperature, annual energy and moisture, and elevation, predicted 88% of the variation in species density for the whole continent. Among different regions of North America, the environmental variables that predicted species density vary. Changes in the size and trophic structure of mammalian faunas accompany changes in species density. Redundancy analysis demonstrated that environmental variables representing winter temperature, frostfree period, potential and actual evapotranspiration, and elevation account for 77% of the variation in ecological structure. Main conclusions, The latitudinal gradient in mammalian species density is strong, but most of it is explained by variation in the environmental variables. Each ecological category peaks in species richness under particular environmental conditions. The changes of greatest magnitude involve the smallest size categories (< 10 g, 11,100 g), aerial insectivores and frugivores. Species in these categories, mostly bats, increase along a gradient of decreasing winter temperature and increasing annual moisture and frostfree period, trends correlated with latitude. At the opposite end of this gradient, species in the largest size category (101,1000 kg) increase in frequency. Species in size categories 3 (101,1000 g), 5 (11,100 kg) and 6 (101,1000 kg), herbivores, and granivores increase along a longitudinal gradient of increasing annual potential evapotranspiration and elevation. Much of the spatial pattern is consistent with ecological sorting of species ranges along environmental gradients, but differential rates of speciation and extinction also may have shaped the ecological diversity of extant North American mammals. [source]


A Calibrated, High-Resolution GOES Satellite Solar Insolation Product for a Climatology of Florida Evapotranspiration,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2009
Simon J. Paech
Paech, Simon J., John R. Mecikalski, David M. Sumner, Chandra S. Pathak, Quinlong Wu, Shafiqul Islam, and Taiye Sangoyomi, 2009. A Calibrated, High-Resolution GOES Satellite Solar Insolation Product for a Climatology of Florida Evapotranspiration. Journal of the American Water Resources Association (JAWRA) 45(6):1328-1342. Abstract:, Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m,2/day (13%). Calibration reduced errors to 1.7 MJ m,2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. [source]


CLIMATE CHANGE IMPACTS ON WATER RESOURCES OF THE TSENGWEN CREEK WATERSHED IN TAIWAN,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2001
Ching-pin Tung
ABSTRACT: This study presents a methodology to evaluate the vulnerability of water resources in the Tsengwen creek watershed, Taiwan. Tsengwen reservoir, located in the Tsengwen creek watershed, is a multipurpose reservoir with a primary function to supply water for the ChiaNan Irrigation District. A simulation procedure was developed to evaluate the impacts of climate change on the water resources system. The simulation procedure includes a streamflow model, a weather generation model, a sequent peak algorithm, and a risk assessment process. Three climate change scenarios were constructed based on the predictions of three General Circulation Models (CCCM, GFDL, and GISS). The impacts of climate change on streamflows were simulated, and, for each climate change scenario, the agricultural water demand was adjusted based on the change of potential evapotranspiration. Simulation results indicated that the climate change may increase the annual and seasonal streamflows in the Tsengwen creek watershed. The increase in streamflows during wet periods may result in serious flooding. In addition, despite the increase in streamflows, the risk of water deficit may still increase from between 4 and 7 percent to between 7 and 13 percent due to higher agricultural water demand. The simulation results suggest that the reservoir capacity may need to be expanded. In response to the climate change, four strategies are suggested: (1) strengthen flood mitigation measures, (2) enhance drought protection strategies, (3) develop new water resources technology, and (4) educate the public. [source]


Managing precipitation use in sustainable dryland agroecosystems

ANNALS OF APPLIED BIOLOGY, Issue 2 2004
GARY A PETERSON
Summary In the Great Plains of North America potential evaporation exceeds precipitation during most months of the year. About 75% of the annual precipitation is received from April through September, and is accompanied by high temperatures and low relative humidity. Dryland agriculture in the Great Plains has depended on wheat production in a wheat-fallow agroecosystem (one crop year followed by a fallow year). Historically this system has used mechanical weed control practices during the fallow period, which leaves essentially no crop residue cover for protection against soil erosion and greatly accelerates soil organic carbon oxidation. This paper reviews the progress made in precipitation management in the North American Great Plains and synthesises data from an existing long-term experiment to demonstrate the management principles involved. The long-term experiment was established in 1985 to identify dryland crop and soil management systems that would maximize precipitation use efficiency (maximization of biomass production per unit of precipitation received), improve soil productivity, and increase economic return to the farmers in the West Central portion of the Great Plains. Embedded within the primary objective are sub-objectives that focus on reducing the amount of summer fallow time and reversing the soil degradation that has occurred in the wheat-fallow cropping system. The experiment consists of four variables: 1) Climate regime; 2) Soils; 3) Management systems; and 4) Time. The climate variable is based on three levels of potential evapotranspiration (ET), which are represented by three sites in eastern Colorado. All sites have annual long-term precipitation averages of approximately 400,450 mm, but vary in growing season open pan evaporation from 1600 mm in the north to 1975 mm in the south. The soil variable is represented by a catenary sequence of soils at each site. Management systems, the third variable, differ in the amount of summer fallow time and emphasize increased crop diversity. All systems are managed with no-till techniques. The fourth variable is time, and the results presented in this paper are for the first 12 yr (3 cycles of the 4-yr system). Comparing yields of cropping systems that differ in cycle length and systems that contain fallow periods, when no crop is produced, is done with a technique called "annualisation". Yields are "annualised" by summing yields for all crops in the system and dividing by the total number of years in the system cycle. For example in a wheat-fallow system the wheat yield is divided by two because it takes 2 yr to produce one crop. Cropping system intensification increased annualised grain and crop residue yields by 75 to 100% compared to wheat-fallow. Net return to farmers increased by 25% to 45% compared to wheat-fallow. Intensified cropping systems increased soil organic C content by 875 and 1400 kg ha,1, respectively, after 12 yr compared to the wheat-fallow system. All cropping system effects were independent of climate and soil gradients, meaning that the potential for C sequestration exists in all combinations of climates and soils. Soil C gains were directly correlated to the amount of crop residue C returned to the soil. Improved macroaggregation was also associated with increases in the C content of the aggregates. Soil bulk density was reduced by 0.01g cm,3 for each 1000 kg ha,1 of residue addition over the 12-yr period, and each 1000 kg ha,1 of residue addition increased effective porosity by 0.3%. No-till practices have made it possible to increase cropping intensification beyond the traditional wheat-fallow system and in turn water-use efficiency has increased by 30% in West Central Great Plains agroecosystems. Cropping intensification has also provided positive feedbacks to soil productivity via the increased amounts of crop residue being returned to the soil. [source]


An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions

BOREAS, Issue 1 2010
WENYING JIANG
Jiang, W., Guiot, J., Chu, G., Wu, H., Yuan, B., Hatté, C. & Guo, Z. 2009: An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions. Boreas, 10.1111/j.1502-3885.2009.00115.x. ISSN 0300-9483. This study presents an improved method of the plant functional type modern analogues technique (PFT-MAT) in which environmental proxies and a moisture index (,, i.e. ratio of actual evapotranspiration to potential evapotranspiration) are used to constrain the selection of modern analogues. The method is tested using high-resolution, precisely dated palaeorecords (pollen, Pediastrum and ,18O of authigenic carbonate) from Lake Bayanchagan, northern China. The unconstrained and constrained PFT-MAT produces general agreement for Holocene climate changes, with a wet period between 11 000 and 5500 cal. yr BP and a warm interval between 11 000 and 8000 cal. yr BP. However, there are significant differences in the details of their reconstruction. The constrained PFT-MAT generally yields smaller error bars for the reconstructed climate parameters than the unconstrained PFT-MAT. In addition, three prominent climatic events are identified from the constrained reconstructions; namely, a cold event around 8400 cal. yr BP and two warm events around 6000 and 2000 cal. yr BP, which is consistent with other regional palaeoclimatic records. Our data show that changes in tree components correlate well with , variations during the entire Holocene, with the highest tree components and highest , values between 8000 and 5500 cal. yr BP, indicating the dominant role of , in the growth of trees in northern China rather than single temperature or precipitation. The improved PFT-MAT is therefore an efficient method for quantitative reconstructions of palaeoclimate in arid and semi-arid regions. [source]