Potential Ecological (potential + ecological)

Distribution by Scientific Domains

Terms modified by Potential Ecological

  • potential ecological risk

  • Selected Abstracts


    A rapid technique for assessing the suitability of areas for invasive species applied to New Zealand's rivers

    DIVERSITY AND DISTRIBUTIONS, Issue 2 2008
    Cathy Kilroy
    ABSTRACT Early responses to incursions of non-indigenous species (NIS) into new areas include modelling and surveillance to define the organisms' potential and actual distributions. For well-studied invasive species, predictive models can be developed based on quantitative data describing environmental tolerances. In late 2004, an invasive freshwater diatom Didymosphenia geminata, an NIS for which we had no such quantitative data, was detected in a New Zealand river. We describe a procedure used to rapidly develop a classification of suitability for all New Zealand's rivers, based on two sources of information. First, from a review of the limited available literature and unpublished data, we determined that temperature, hydrological and substrate stability, light availability, and water pH were the most important environmental gradients determining D. geminata's broad-scale distribution and capacity for establishing and forming blooms in rivers. The second information source was a GIS-based river network developed for a national classification of New Zealand's rivers, with associated data describing environmental characteristics of each section of the network. We used six variables that were available for every section of the network as surrogates for the environmental gradients that determine suitability. We then determined the environmental distance of all the river sections in the network from our assessment of the optimal conditions conducive to D. geminata blooms. The analysis suggested that > 70% of New Zealand's river sections (stream order > 3) fell into the two highest suitability categories (on a five-point scale). At the time of writing, D. geminata had spread to 12 catchments, all of which were within these two categories. The technique is applicable in initial responses to incursions of NIS where quantitative information is limited, and makes optimal use of available qualitative information. Our assessment contributed to evaluations of the potential ecological, social, and economic impacts of D. geminata and is currently being used to stratify site selection for ongoing surveillance. [source]


    Restoration of sturgeons: lessons from the Caspian Sea Sturgeon Ranching Programme

    FISH AND FISHERIES, Issue 3 2000
    D.H. Secor
    Depletion of sturgeon stocks world-wide has increased interest in aquaculture-based restoration programmes. The Caspian Sea Sturgeon Ranching Programme (SRP) of the former Soviet Union represents a unique opportunity to evaluate expense, benefits and potential ecological and genetic effects of such restoration programmes. The SRP was initiated in the 1950s to compensate for lost spawning habitat in the Volga River and elsewhere. After its completion in 1962, the Volgograd Dam reduced spawning grounds in the Volga River system, the principal spawning tributary of the Caspian Sea, by ,80%. For two of the three commercial sturgeon species (Russian sturgeon, Acipenser güldenstädti, and stellate sturgeon, A. stellatus), yields improved after the imposition of the 1962 moratorium on sturgeon harvests in the Caspian Sea. Volga River fisheries were managed for spawning escapement. Although imprecisely known, the contribution of the millions of stocked Russian and stellate juveniles during 1962,91 was most likely important to sustaining fisheries, although less so (contributing to <30% of the adult stock) than natural recruitment. Apparently, reduced spawning grounds, supplemented with artificial spawning reefs were sufficient to support reproduction and large fishery yields of Russian and stellate sturgeons. For beluga sturgeon, Huso huso, harvests in the Volga River were nearly all dependent upon hatchery stocking. Beluga sturgeon spawning grounds were mostly eliminated with the construction of the Volgograd Dam. Without the hatchery programme, beluga sturgeon in the Volga River and Caspian Sea would in all likelihood have been extirpated. Currently, sturgeons are severely depleted in the Volga River and Caspian Sea due to poaching and lack of co-operation between countries exploiting the species. Aquaculture-based restoration in Russia is now viewed a chief means of rebuilding stocks of Caspian Sea sturgeons. [source]


    Biotic homogenization: a new research agenda for conservation biogeography

    JOURNAL OF BIOGEOGRAPHY, Issue 12 2006
    Julian D. Olden
    Abstract Aim, Biotic homogenization describes the process by which species invasions and extinctions increase the genetic, taxonomic or functional similarity of two or more biotas over a specified time interval. The study of biotic homogenization is a young and rapidly emerging research area in the budding field of conservation biogeography, and this paper aims to synthesize our current knowledge of this process and advocate a more systematic approach to its investigation. Methods, Based on a comprehensive examination of the primary literature this paper reviews the process of biotic homogenization, including its definition, quantification, underlying ecological mechanisms, environmental drivers, the empirical evidence for different taxonomic groups, and the potential ecological and evolutionary implications. Important gaps in our knowledge are then identified, and areas of new research that show the greatest promise for advancing our current thinking on biotic homogenization are highlighted. Results, Current knowledge of the patterns, mechanisms and implications of biotic homogenization is highly variable across taxonomic groups, but in general is incomplete. Quantitative estimates are almost exclusively limited to freshwater fishes and plants in the United States, and the principal mechanisms and drivers of homogenization remain elusive. To date research has focused on taxonomic homogenization, and genetic and functional homogenization has received inadequate attention. Trends over the past decade, however, suggest that biotic homogenization is emerging as a topic of greater research interest. Main conclusions, My investigation revealed a number of important knowledge gaps and priority research needs in the science of biotic homogenization. Future studies should examine the homogenization process for different community properties (species occurrence and abundance) at multiple spatial and temporal scales, with careful attention paid to the various biological mechanisms (invasions vs. extinctions) and environmental drivers (environmental alteration vs. biotic interactions) involved. Perhaps most importantly, this research should recognize that there are multiple possible outcomes resulting from the accumulation of species invasions and extinctions, including biotic differentiation whereby genetic, taxonomic or functional similarity of biotas decreases over time. [source]


    Male Body Size and Mating Success and Their Relation to Larval Host Plant History in the Moth Rothschildia lebeau in Costa Rican Dry Forest

    BIOTROPICA, Issue 2 2010
    Salvatore J. Agosta
    ABSTRACT The moth Rothschildia lebeau uses three tree species as its primary larval hosts in the tropical dry forest of northwestern Costa Rica. These hosts were shown previously to have different relative effects on caterpillar performance, resulting in an apparent host-related life history trade-off between large adult body size on the one hand but low offspring survival on the other. To further assess the potential ecological and evolutionary importance of this trade-off, an observational field study of the relationship between male body size and mating success was conducted. Across mating trials, larger males had a higher probability of being observed mating. Independent of the effect of size, the amount of wing damage an individual had sustained (a measure of relative age) was negatively correlated with the probability a male was observed mating. Within mating trials, the mated male tended to be larger than the average unmated male, but there was no difference in wing damage. Overall, results of this study were consistent with a positive effect of male body size on mating success, consistent with the idea that larval host plant history and its effects on adult body size matters in terms of adult male fitness. However, all sized males were observed mating over the course of the study, and the size advantage did not appear to be particularly strong. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]