Home About us Contact | |||
Potential Characteristics (potential + characteristic)
Selected AbstractsInfluence of Wavefront Dynamics on Transmembrane Potential Characteristics During Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2000CHARLES A. ATHILL M.D. Transmembrane Potential Characteristics. Introduction: Although computerized mapping studies have demonstrated the presence of multiple wavelets during atrial fibrillation (AF) and that action potential amplitude and duration in AF vary significantly from beat to heat, no study has correlated the single cell action potential changes with the patterns of activation during AF. Methods and Results: We studied wavefront dynamics and single cell transmembrane potential (TMP) characteristics in 12 isolated perfused canine right atria. The endocardial surface was mapped using 477 bipolar electrodes while TMP was recorded with a standard glass microelectrode from an epicardial cell. AF was induced in the presence of acetylcholine. Successful simultaneous TMP recordings and activation maps were made during six episodes of AF and for a total of 141 activations. Large variations of TMP amplitude and duration were observed frequently; 34% of them have a low amplitude (<50% of the amplitude recorded during pacing). Low-amplitude potentials were recorded when the impaled cell was (1) in an area of random reentry (67%, n = 36); (2) within 3.2 mm of the core of organized functional reentry (22%, n = 12); (3) in the middle of two merging wavefronts (9%, n = 5); and (4) at the point of spontaneous wavebreak (2%, n = 1). Conclusion: Large variations of TMP are observed frequently during in vitro AF. Low-amplitude TMPs are associated with specific patterns of AF activation wavefronts. [source] Complexity of Anti-immunosenescence Strategies in HumansARTIFICIAL ORGANS, Issue 10 2006Miriam Capri Abstract:, Immunosenescence is characterized by three main aspects: (i) the shrinkage of the T cell repertoire and the accumulation of oligoclonal expansions (megaclones) of memory/effector cells directed toward ubiquitary infectious agents; (ii) the involution of the thymus and the exhaustion of naïve T cells; and (iii) a chronic inflammatory status called inflamm-aging. We present here possible strategies to counteract these main aspects of immunosenescence in humans with particular attention to the reduction of antigenic load by pathogens, such as CMV, and the normalization of intestinal microflora, the possible utilization of IL-7 to reverse thymic involution, the purging of megaclones, the forced expression of CD28 on T lymphocytes, the reduction of inflamm-aging and the administration of nutrients such as vitamin D. Possible drawbacks of all these strategies are discussed. Finally, the complexity of a rejuvenation approach is stressed, with particular attention to the inhibitory role played by the "old microenvironment" on the performance of progenitor cells, the best candidate to counteract the decline in regenerative potential characteristic of organs and tissues from old organisms. [source] Prolonged Atrial Action Potential Durations and Polymorphic Atrial Tachyarrhythmias in Patients with Long QT SyndromeJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2003PAULUS KIRCHHOF M.D. Introduction: Prolongation of the QT interval and torsades de pointes tachycardias due to altered expression or function of repolarizing ion channels are the hallmark of congenital long QT syndrome (LQTS). The same ion channels also contribute to atrial repolarization, and familial atrial fibrillation may be associated with a mutated KVLQT1 gene. We therefore assessed atrial action potential characteristics and atrial arrhythmias in LQTS patients. Methods and Results: Monophasic action potentials (MAPs) were simultaneously recorded from the right atrial appendage and the inferolateral right atrium in 10 patients with LQTS (8 with identifiable genotype) and compared to 7 control patients. Atrial arrhythmias also were compared to MAPs recorded in patients with persistent (n = 10) and induced (n = 4) atrial fibrillation. Atrial action potential durations (APD) and effective refractory periods (ERP) were prolonged in LQTS patients at cycle lengths of 300 to 500 msec (APD prolongation 30,41 msec; ERP prolongation 26,52 msec; all P < 0.05). Short episodes of polymorphic atrial tachyarrhythmias (polyAT, duration 4,175 sec) occurred spontaneously or during pauses after pacing in 5 of 10 LQTS patients, but not in controls (P < 0.05). P waves showed undulating axis during polyAT. Cycle lengths of polyAT were longer than during persistent and induced atrial fibrillation. Afterdepolarizations preceded polyAT in 2 patients. The electrical restitution curve was shifted to longer APD in LQTS patients and to even longer APD in LQTS patients with polyAT. Conclusion: This group of LQTS patients has altered atrial electrophysiology: action potentials are prolonged, and polyAT occurs. PolyAT appears to be a specific arrhythmia of LQTS reminiscent of an atrial form of "torsades de pointes."(J Cardiovasc Electrophysiol, Vol. 14, pp ***-***, October 2003) [source] |