Potent Anti-inflammatory Properties (potent + anti-inflammatory_property)

Distribution by Scientific Domains


Selected Abstracts


Effect of ,-trinositol on secretion induced by Escherichia coli ST-toxin in rat jejunum

ACTA PHYSIOLOGICA, Issue 4 2003
A.-M. Lahti
Abstract Aim:,d -myo-inositol-1,2,6-trisphosphate (, -trinositol, PP56), is a synthetic isomer of the intracellular second messenger, d -myo-inositol-1,4,5-trisphospahate. The pharmacological actions of , -trinositol include potent anti-inflammatory properties and inhibition of the secretion induced by cholera toxin and obstructive ileus. In the present study, we investigated whether , -trinositol was able to influence the secretion induced by heat-stable ST-toxin from Escherichia coli in the rat jejunum. Methods:, A midline abdominal incision was performed in anaesthetized male Sprague,Dawley rats and a 6,7 cm long jejunal segment was isolated with intact vascular supply and placed in a chamber suspended from a force displacement transducer connected to a Grass® polygraph. Intestinal net fluid transport was continuously monitored gravimetrically. Crystalline ST-toxin (120 mouse units) was introduced into the intestinal lumen and left there for the rest of the experiment. When a stable secretion was observed, , -trinositol (60 mg kg,1 h,1) or saline were infused during 2 h, followed by a 2-h control period. Results:, , -Trinositol induced a significant (P < 0.001) inhibition of ST-toxin secretion within 30 min, lasting until 2 h after infusion had stopped. The agent also moderately increased (P < 0.05) net fluid absorption in normal jejunum. Mean arterial pressure (P < 0.001) and heart rate (P < 0.001) were reduced by , -trinositol. Conclusion:, The inhibition by , -trinositol of ST-toxin induced intestinal secretion is primarily secondary to inhibition of secretory mechanisms and only to lesser extent due to increased absorption. The detailed mechanisms of action have not been clarified but may involve suppression of inflammation possibly by means of cellular signal transduction. [source]


Sphingosine-1-phosphate and FTY720 as anti-atherosclerotic lipid compounds

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2007
M. Tölle
Abstract All stages of atherosclerosis have been identified as a chronic vascular inflammatory disease. In the last few years there is increasing evidence that endogenous lysophospholipids such as sphingosine-1-phosphate (S1P) have potent anti-inflammatory properties. The S1P analogue FTY720 that has been developed as a potent, orally active, immunosuppressant in the field of transplantation and autoimmune disease has interesting effects on inflammatory processes in the arterial vessel wall. S1P targets five specific S1P receptors (S1P1,5), which are ubiquitously expressed. S1P1,3 receptor expression is identified in arterial vessels. S1P and FTY720 show potent silencing effects on some vascular proinflammatory mechanisms in endothelial and vascular smooth muscle cells. In addition, the interaction of monocytes with the vessel wall is inhibited. As shown recently, FTY720 can effectively reduce the progression of atherosclerosis in apolipoprotein E-deficient mice having a high-cholesterol diet. It is not entirely clear which S1P receptor subtype is mainly involved in this process. However, it is currently speculated that the S1P3 and probably the S1P1 is involved in the anti-atherosclerotic effects of FTY720. This review summarizes the current knowledge about S1P- and FTY720-effects on mechanisms of vascular inflammatory disease. In addition S1P receptor subtypes are identified which might be interesting for molecular drug targeting. [source]


Lipoxin A4 inhibited hepatocyte growth factor-induced invasion of human hepatoma cells

HEPATOLOGY RESEARCH, Issue 9 2009
Xiao-Yan Zhou
Aim:, Inflammation is a critical component of tumor progression. Lipoxin A4 (LXA4) has been approved for potent anti-inflammatory properties. Recently, it was reported that LXA4 repressed the expression and activity of cyclooxygenase-2 (COX-2), which is essential for invasion. However, there are few reports dealing with its effects on cancer. To explore whether LXA4 regulate invasion, the effects of LXA4 and its receptor agonist BML-111 on hepatocyte growth factor (HGF)-induced invasion of hepatoma cells and the possible mechanisms were researched. Methods:, Lipoxin A4 receptor (ALX) expression in HepG2 cells were measured through reverse transcription polymerase chain reaction and western blot. Cytotoxicity of LXA4 and BML-111 to HepG2 cells was detected by MTT and (3H)-TdR incorporation assay. Cell migration and invasion assays were performed using a Boyden chemotaxis chamber. COX-2 expression was detected by real-time polymerase chain reaction and western blot, respectively. Moreover, the expressions of matrix metalloproteinases (MMP)-2, MMP-9, I,B, and nuclear factor-,B (NF-,B) p65 were observed via western blot, and NF-,B transcriptional activity was tested by transfections and luciferase activities assay. Results:, ALX expression was detected in HepG2 cells, and suitable concentrations of LXA4 and BML-111 had no cytotoxicity to cells. LXA4 and BML-111 inhibited HGF-induced migration and invasion; downregulated COX-2, MMP-2 and -9; restrained HGF-induced I,B, degradation, NF-,B translocation and the transcriptional activity of NF-,B in HepG2 cells. Furthermore, exogenous PGE2 could reverse the inhibitory effects of LXA4 also BML-111 on HGF-induced invasion and migration partially. Conclusion:, LXA4 inhibited HGF-induced invasion of HepG2 cells through NF-,B/COX-2 signaling pathway partially. [source]


Vitamin D and glucocorticoids differentially modulate chemokine expression in human airway smooth muscle cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2008
A Banerjee
Background and purpose: Chemokines play a critical role in the pathogenesis of asthma and facilitate the recruitment of inflammatory cells in the airways. Evidence now suggests that airway smooth muscle (ASM) may serve as a source of chemokines in inflamed airways. Although vitamin D has potent anti-inflammatory properties in vitro in some cell types, its effects on ASM cells remain unclear. Here, we investigated whether 1,, 25-dihydroxy vitamin D3 (calcitriol) modulated chemokine production in ASM. Experimental approach: Human ASM cell cultures were derived from tracheal samples taken during surgery. ASM cells were treated with tumour necrosis factor alpha (TNF,) and/or interferon gamma (IFN,) for 24 h in the presence of calcitriol and/or the glucocorticoid fluticasone added 2 h before. RANTES (regulated upon activation, normal T-cell expressed and secreted), interferon-inducible protein 10 (IP-10) and fractalkine (FKN) levels in cell supernatants were measured by ELISA. Key results: In TNF,-treated cells, calcitriol inhibited RANTES and IP-10 secretion in a concentration-dependent manner. FKN levels were negligible. In TNF,/IFN,-treated cells, whereas fluticasone or calcitriol alone partially inhibited RANTES secretion (by 38 and 20%, respectively), the combination of both drugs additively inhibited RANTES secretion (by 60%). No effect was observed on IP-10 secretion. Whereas fluticasone enhanced FKN secretion (by 50%), calcitriol significantly decreased FKN levels (by 50%). Interestingly, calcitriol blocked the stimulatory effect of fluticasone on FKN secretion, which was inhibited by 60% with the combination of calcitriol and fluticasone. Conclusions and implications: These findings suggest that vitamin D uniquely modulates human ASM expression of chemokines and may exert some beneficial effects in the treatment of steroid-resistant patients with asthma. British Journal of Pharmacology (2008) 155, 84,92; doi:10.1038/bjp.2008.232; published online 16 June 2008 [source]